首页> 外文学位 >Photo-excitation of gated p-silicon field emitter arrays.
【24h】

Photo-excitation of gated p-silicon field emitter arrays.

机译:栅p硅场发射极阵列的光激励。

获取原文
获取原文并翻译 | 示例

摘要

There is a growing interest in vacuum macro/nano-electronics in which very small structures are fabricated in a well-defined array of gate apertures. The arrays are biased to emit electron currents from the surface of emitter tips into vacuum by field emission. Field emission is a quantum mechanical process in which electrons with energies below the top of the potential barrier tunnel through the barrier at the tip/vacuum interface. The small dimension enables high fields at relatively low voltages, typically from 10--200 V. Field emission from p-Si exhibits a light-sensitive saturation region, which can be optically modulated. Unlike electrical modulation, optical modulation can potentially bypass the large gate-to-substrate capacitance. As a result, ultra-short electron bunches are achievable when excited with ultra-short optical pulses. Ultra-fast optically modulated p-Si field emitter arrays (FEAs) can be used beneficially in microwave tube applications.; Microfabrication steps using standard silicon processes have been refined to consistently produce functional devices without an undesired "burn-out" process to achieve low leakage currents. Together with better conditioning techniques, devices showing superior performance have been demonstrated. The improved FEAs possess emission currents achieving 1800 times the gate currents. Current-voltage characteristics exhibit a clear transition from normal field emission at low voltages to saturation at high voltages, consistent with reported models of the Fowler-Nordheim theory and energy trap levels, respectively. Quantum efficiencies of 55% have been achieved. Dynamic range of 160 and photocurrent approaching 0.5 mA have been obtained. Photo-excitation with laser pulses at 12-kHz repetition rate results in field emission current pulses having the same rate. Temporal response analyses of a gated FEA suggest that photo-excited electrons can possess three different responses: sub-nanosecond response by drift electrons right beneath the emission site, sub-microsecond response by diffusion electrons, and microsecond response by the RC time constant from the gate capacitor. A FEA device having a high packing density of emitters per unit area is expected to increase the fast signal. These findings have paved the way for a future gated FEA photocathode capable of sub-nanosecond responses and high peak currents.
机译:人们对真空宏/纳米电子学的兴趣日益浓厚,在真空宏/纳米电子学中,非常小的结构以明确定义的栅极孔阵列制造。阵列被偏置以通过场发射从发射器尖端的表面发射电子电流到真空中。场发射是一种量子力学过程,其中能量低于势垒顶部的电子通过尖端/真空界面处的势垒隧穿。小尺寸可在相对较低的电压(通常为10--200 V)下实现高电场.p-Si的场发射呈现光敏饱和区,可以对其进行光调制。与电调制不同,光调制有可能绕过较大的栅极至衬底电容。结果,当用超短光脉冲激发时,可获得超短电子束。超快速光学调制的p-Si场发射器阵列(FEA)可有益地用于微波管应用。已经改进了使用标准硅工艺的微细加工步骤,以始终如一地生产功能性器件,而无需进行不良的“烧尽”工艺以实现低漏电流。结合更好的调理技术,已经证明了具有优异性能的设备。改进的FEA的发射电流达到栅极电流的1800倍。电流-电压特性显示出从低电压的正常场发射到高电压的饱和的清晰过渡,这分别与Fowler-Nordheim理论和能量陷阱能级的报告模型相一致。已达到55%的量子效率。动态范围为160,光电流接近0.5 mA。激光脉冲以12 kHz的重复频率进行光激发会导致场发射电流脉冲具有相同的频率。门控FEA的时间响应分析表明,光激发电子可以具有三种不同的响应:发射位置正下方的漂移电子产生的亚纳秒响应,扩散电子引起的亚微秒响应以及来自电子的RC时间常数的微秒响应。栅极电容器。期望每单位面积的发射器具有很高的堆积密度的FEA器件可以增加快速信号。这些发现为将来能够实现亚纳秒级响应和高峰值电流的门控FEA光电阴极铺平了道路。

著录项

  • 作者

    Liu, Kendrick Xuong.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 309 p.
  • 总页数 309
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号