首页> 外文学位 >Using Escherichia coli and Pseudomonas aeruginosa as model bacteria to investigate the putative silver-adaptation mechanisms of Gram-negative bacteria.
【24h】

Using Escherichia coli and Pseudomonas aeruginosa as model bacteria to investigate the putative silver-adaptation mechanisms of Gram-negative bacteria.

机译:以大肠杆菌和铜绿假单胞菌为模型细菌,研究革兰氏阴性细菌的推测银适应机制。

获取原文
获取原文并翻译 | 示例

摘要

For years, silver ion has been used in the water professions and medical fields as an antimicrobial agent to control the harmful microorganisms for years. In the past few years, emerging nanotechnologies have even created more silver-ion applications by using nanosilver as a bactericide in consumer goods. This increased attention on silver ion as an antimicrobial agent reveals an urgent demand for understanding how microorganisms respond to silver-ion toxicity, but the silver-resistance mechanisms of microorganisms are only partially known. Thus, a comprehensive understanding of the silver-resistance mechanisms of microorganisms is essential. This current research studied the putative silver-resistance/adaptation mechanisms of Gram-negative microorganisms in different physiological conditions. The central hypothesis of this research is that the microorganisms could use their own heavy-metal-related genes to exclude silver ion either in the planktonic or the biofilm state, and the silver-resistance mechanisms would be decided by the physiologic states. To test the central hypothesis, this study selected two Gram-negative microorganisms, Escherichia coli and Pseudomonas aeruginosa, cultivated in either the batch or the biofilm-annular reactor. The microorganisms were challenged by silver ion and analyzed the genetic responses of these two microorganisms against silver-ion toxicity by using the whole-genome microarray and relative-quantitative real-time polymerase-chain reaction analyses.;The results of this research suggested that (1) The sessile-biofilm P. aeruginosa can adapt to the silver-ion toxicity and grow resiliently after being exposed to silver ion over a long period of time; (2) Copper-resistance genes are essential in silver-resistance/adaptation mechanisms of Gram-negative microorganisms; (3) Some other heavy-metal functional genes were involved in silver-resistance/adaptation mechanisms, but the involvements of these genes were determined by the physiological conditions and microbial species; (4) Microorganisms suffered severe oxidative stresses induced by silver ion because this study observed whole sets of the oxidant-defense-mechanism genes being up regulated (except the superoxide-dismutase genes in the sessile biofilm of both E. coli and P. aeruginosa) in response to silver-ion challenges; (5) E. coli can tailor expressions of resistance genes delicately to respond to silver-ion toxicity in different growth phases of the planktonic condition; and (6) The microorganisms would respond to the silver-ion toxicity differently on gene-expression levels, but they did share certain core resistance molecular functions.;The findings of this current study provided novel information on how Gram-negative microorganisms in different physiological conditions responded to the silver-ion toxicities. There were common genetic responses among them, but the different genetic responses varied by the different physiological conditions. The results strongly validated the central hypothesis of this research. More importantly, this research showed that the sessile-biofilm P. aeruginosa grew resiliently as it was exposed to silver ion over 51 days. This discovery put into doubt the current applications of using silver ion as a disinfectant in the water profession.
机译:多年来,银离子已在水行业和医学领域用作控制有害微生物的抗菌剂。在过去的几年中,新兴的纳米技术通过在消费品中使用纳米银作为杀菌剂,甚至创造了更多的银离子应用。对银离子作为抗菌剂的关注日益增强,这显示了对理解微生物如何响应银离子毒性的迫切需求,但是微生物的抗银机理仅是部分已知的。因此,全面了解微生物的抗银机制至关重要。这项当前的研究研究了革兰氏阴性微生物在不同生理条件下的抗银/适应机制。这项研究的中心假设是,微生物可以利用自身的重金属相关基因排除浮游生物或生物膜状态的银离子,而其抗银机制将由生理状态决定。为了检验中心假设,本研究选择了两种革兰氏阴性微生物,即大肠杆菌和铜绿假单胞菌,它们分别在分批培养或生物膜-环形反应器中培养。微生物受到银离子的攻击,并通过全基因组微阵列和相对定量实时聚合酶链反应分析,分析了这两种微生物对银离子毒性的遗传反应。 1)固着生物膜铜绿假单胞菌在长时间暴露于银离子后能适应银离子的毒性并能有弹性地生长; (2)铜抗性基因在革兰氏阴性菌的抗银/适应机制中至关重要。 (3)其他一些重金属功能基因参与了银的抗性/适应性机制,但这些基因的参与是由生理条件和微生物种类决定的。 (4)微生物遭受了由银离子引起的严重氧化应激,因为该研究观察到整套的氧化防御机制基因均被上调(除了大肠杆菌和铜绿假单胞菌的无柄生物膜中的超氧化物歧化酶基因)应对银离子挑战; (5)大肠埃希氏菌可以精确地调整抗性基因的表达,以应对浮游生物不同生长期的银离子毒性; (6)微生物在基因表达水平上对银离子毒性的反应不同,但它们确实具有一定的核心抗性分子功能。这项研究的发现为不同生理条件下革兰氏阴性微生物的分化提供了新的信息。条件对银离子毒性有反应。它们之间有共同的遗传反应,但是不同的遗传反应因生理条件的不同而不同。结果强烈证实了这项研究的中心假设。更重要的是,这项研究表明,固着生物膜铜绿假单胞菌在暴露于银离子超过51天后具有弹性生长。这一发现使人们怀疑在水行业中使用银离子作为消毒剂的当前应用。

著录项

  • 作者

    Wu, Mau-Yi.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Biology Microbiology.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号