首页> 外文学位 >Molecular structural and electrical characterization of rodlike aggregates of discotic phthalocyanines.
【24h】

Molecular structural and electrical characterization of rodlike aggregates of discotic phthalocyanines.

机译:盘状酞菁棒状聚集体的分子结构和电学表征。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation focuses on structural and electrical characterization of self-organizing discotic molecular materials, specifically alkoxy and thioether side chain modified copper phthalocyanines, both in bulk and at organic/dielectric and organic/metal interfaces.; A great deal of effort has been focused on understanding the self-organizing nature in these materials since molecular ordering is believed to control the intrinsic physical as well as electrical properties of these molecular aggregates. It was determined that side chains in these Pcs have a significant impact on the general ordering in these materials: alkoxy side chain modification favors a columnar hexagonal phase with a cofacial intracolumn alignment; thioether side chain modification, however, favors a tilted intracolumn alignment and much rigid columnar packing, driven by sulfur-sulfur interactions among adjacent molecular disks. Incorporation of styrene functionality in the side chain has been shown to enable photopolymerization. An optimal hexagonal columnar packing has been proved to be stabilized via photolysis at the mesophase.; It is critical to explore the molecular ordering as well as the charge transport characteristics at interfaces since the organic/dielectric interface controls the charge accumulation in organic field-effect transistors (OFETs) and the metal/organic interface determines the charge injection in devices such as organic photovoltaic cells (OPVs). Two analytical tools have been developed in this dissertation work that successfully address these interfacial issues from a molecular level. (1) Probing interfacial structures at the organic/dielectric interface with X-ray reflectometry (XRR). Surface chemistry has shown a drastic impact on the ordering of the initially deposited materials. Surface engineering strategies, i.e. chemical modification, have been shown to significantly improve the coherence of molecular assemblies thereby optimizing charge transport properties of these molecular materials in an OFET platform. (2) Exploring charge injection and transport characteristics at molecular junctions with conductive-probe AFM (C AFM). Charge injection processes at the metal/organic molecular junction have shown a strong dependence on the microstructure of these molecular materials. Thermionic emission and field emission were shown to be competing processes at these junctions. One dimensional charge transport is realized only with the appropriate molecular ordering in these discotic materials at metal/organic junctions. (3) Exploring structural and electrical properties of ITO with C-AFM. The ITO surfaces have shown both structural and electrical heterogeneity at the nanometer scale. A tunneling model has been proposed and the presence of thin insulating layers was believed to be the cause of electrically inactive regions of ITO. Aggressive chemical etching protocols have been developed and shown to improve the percentage of surface electrically active area, thereby, enhancing the electrode performance.
机译:本文主要研究自组织盘状分子材料,尤其是烷氧基和硫醚侧链改性的铜酞菁的结构和电学特性,这些材料既可以在本体上,也可以在有机/介电和有机/金属界面上使用。由于人们认为分子有序控制了这些分子聚集体的固有物理和电学性质,因此已经进行了大量的工作来理解这些材料的自组织性质。已确定这些Pcs中的侧链对这些材料的总体排序有重要影响:烷氧基侧链修饰有利于具有柱内排列的柱状六方相;但是,硫醚侧链的修饰有利于倾斜的柱内排列和更刚性的柱状堆积,这是由相邻分子盘之间的硫-硫相互作用驱动的。已经表明在侧链中引入苯乙烯官能团能够进行光聚合。最佳的六角形柱状填料已被证明可通过中间相的光解作用而稳定。由于有机/介电界面控制着有机场效应晶体管(OFET)中的电荷积累,而金属/有机界面决定了诸如以下器件的电荷注入,因此探索界面上的分子有序性以及电荷传输特性至关重要。有机光伏电池(OPV)。本论文开发了两种分析工具,可以从分子水平成功解决这些界面问题。 (1)用X射线反射仪(XRR)探测有机/介电界面的界面结构。表面化学已显示出对最初沉积的材料的有序影响。已经显示表面工程策略,即化学修饰,可以显着改善分子组装体的相干性,从而优化这些分子材料在OFET平台中的电荷传输性能。 (2)利用导电探针原子力显微镜(C AFM)探索分子连接处的电荷注入和传输特性。在金属/有机分子结处的电荷注入过程已显示出对这些分子材料的微观结构的强烈依赖性。在这些结处,热电子发射和场发射被证明是竞争过程。仅通过这些盘状材料在金属/有机连接处的适当分子顺序,才能实现一维电荷传输。 (3)用C-AFM探索ITO的结构和电性能。 ITO表面已经显示出纳米级的结构和电异质性。已经提出了隧穿模型,并且认为薄绝缘层的存在是ITO电非活性区的原因。已经开发出积极的化学蚀刻方案,并显示出可以改善表面电活性区域的百分比,从而提高电极性能。

著录项

  • 作者

    Xia, Wei.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 409 p.
  • 总页数 409
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号