首页> 外文学位 >Microscale organization of cells within 3-D hydrogels by dielectrophoresis: Applications to cartilage biology.
【24h】

Microscale organization of cells within 3-D hydrogels by dielectrophoresis: Applications to cartilage biology.

机译:通过介电电泳在3-D水凝胶中的细胞微观组织:在软骨生物学中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The coordinated behavior of living cells is responsible for tissue development, growth, and regeneration. Understanding the mechanisms by which external and intrinsic cues regulate cell fate and function is crucial to the success of engineered tissues and cell based therapies in the treatment of human disease. These cellular microenvironment signals have recently been investigated using 2-D micropatterning tools. However, there is growing evidence that microenvironment cues expressed in a 3-D context are critical to reflect in vivo cell responses, such that tools to control cellular organization and local chemistry in 3-D are greatly needed. This dissertation aims to develop a novel tool for cell patterning within hydrogels that is: (1) high resolution to define microscale cell organization and cell-cell interactions, (2) versatile and compatible with many biomaterials and cell types, and (3) compatible with standard assays of cell fate and function.; In this work, mammalian cells were rapidly organized within a photopolymerizable poly(ethylene glycol) (PEG) hydrogel using dielectrophoretic (DEP) forces. First, patterning kinetics were mathematically modeled and validated to optimize experimental conditions. Next, various electrode configurations were explored to create well-defined cell organizations that modulate cell-cell interactions, particularly linear patterns and cluster arrays, and design rules were developed for the reproducible fabrication of cell electropatterned hydrogel (CEPH) constructs. This platform was then applied to the study of 3-D cell organization within articular cartilage, the low-friction, load-bearing, wear-resistant material that allows for normal joint motion. Cartilage is often damaged or diseased but has little intrinsic healing capacity; thus, engineering strategies attempt to recapitulate native tissue properties by coaxing the regeneration of the extracellular matrix (ECM). Biosynthesis of glycosaminoglycan, a principal component of the ECM, was downregulated nearly two-fold by clustered chondrocytes relative to randomly dispersed cells, independent of volumetric cell density, viability, mass transfer, and hydrogel chemistry. However, chondrocytes surrounded by a thin matrix were insensitive to cell organization. These findings suggest that chondrocyte organization may be an important regulator of biosynthetic function, carrying implications for engineered tissues as well as in vivo cartilage growth, homeostasis and degeneration, and the methods developed herein may have similar impact in other organ systems.
机译:活细胞的协调行为负责组织的发育,生长和再生。了解外部和内在线索调节细胞命运和功能的机制对于工程化组织和基于细胞的疗法在人类疾病治疗中的成功至关重要。这些细胞微环境信号最近已使用二维微模式工具进行了研究。但是,越来越多的证据表明,在3-D环境中表达的微环境线索对于反映体内细胞反应至关重要,因此,迫切需要用于控制3-D中细胞组织和局部化学作用的工具。本论文旨在开发一种新型的水凝胶内细胞图案化工具,该工具是:(1)高分辨率,用于定义微尺度的细胞组织和细胞-细胞相互作用;(2)通用且与许多生物材料和细胞类型兼容;以及(3)兼容用细胞命运和功能的标准测定。在这项工作中,利用介电电泳(DEP)力将哺乳动物细胞迅速组织在可光聚合的聚(乙二醇)(PEG)水凝胶中。首先,对构图动力学进行数学建模和验证,以优化实验条件。接下来,探索各种电极配置以创建定义明确的细胞组织,以调节细胞-细胞相互作用,尤其是线性模式和簇阵列,并制定了可重复制造细胞电图案化水凝胶(CEPH)构建体的设计规则。该平台随后被用于研究关节软骨内的3-D细胞组织,这种低摩擦,承重,耐磨的材料可使关节正常运动。软骨经常受损或患病,但内在的愈合能力却很弱;因此,工程策略试图通过哄骗细胞外基质(ECM)的再生来概括天然组织的特性。簇状软骨细胞相对于随机分散的细胞,糖基氨基聚糖(ECM的主要成分)的生物合成被下调了几乎两倍,而与体积细胞密度,生存力,传质和水凝胶化学无关。但是,被薄基质包围的软骨细胞对细胞组织不敏感。这些发现表明软骨细胞的组织可能是生物合成功能的重要调节剂,对工程组织以及体内软骨生长,体内稳态和变性具有影响,本文开发的方法可能在其他器官系统中具有类似的影响。

著录项

  • 作者

    Albrecht, Dirk R.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 239 p.
  • 总页数 239
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号