首页> 外文学位 >Mechanical basis of x-ray optics optimal design.
【24h】

Mechanical basis of x-ray optics optimal design.

机译:X射线光学器件最佳设计的机械基础。

获取原文
获取原文并翻译 | 示例

摘要

Synchrotron x-ray optics, such as mirrors and monochromators, are used to reflect, focus, or spectrally filter x-ray beams. The effective delivery and utilization of x-ray beams rely on the quality and performance of these optics. One of the key issues affecting optimal performance is the deviation from ideal shape of the optical surfaces. Such deviation can be due to limitations in manufacturing, but, more often than not, they result from thermal and/or mechanical forces on the substrate. Thus, understanding the deformation and the methods used to minimize undesired deformation can ensure acceptable optical performance. This dissertation addresses rigorous analysis and design optimization of optical substrates subjected to thermal and/or mechanical loads.; An optical substrate may receive up to several kW of thermal load from an incident beam. Part of the heat is absorbed by the substrate, and the rest is reflected. To remove the absorbed heat, substrates are cooled either internally or externally. In either case, the resulting temperature profile in the substrate produces thermal deformation, which misdirects the reflected x-ray beam. This undesirable thermal deformation can be minimized by optimal design of the substrate and its cooling. A theoretical formulation of how optimal contact cooling can minimize thermal deformation is developed. Numerical computations are conducted to verify the analytical results. Design optimization is achieved by examining cooling and substrate geometry configurations.; An optical substrate may also be mechanically bent into a concave shape to focus a divergent incident x-ray beam. The desired shape could be cylindrical or elliptical. But, due to Poisson's effect, anticlastic bending occurs in the opposite direction. As a result, the substrate is bent into a saddle shape. Thus, when an incident x-ray beam is focused in one direction, it expands in the orthogonal direction. An optimal design to minimize anticlastic bending is important. Furthermore, in crystalline optical substrates, bending depends on crystal planes and cut orientation. Crystal anisotropy and its effects on the deformation of bendable optics are also described in this dissertation. Analytical, numerical and experimental results are provided. Crystal anisotropy can be advantageously exploited in the optimal optics design to minimize or maximize anticlastic bending.
机译:同步加速器X射线光学器件(例如反射镜和单色仪)用于反射,聚焦或光谱过滤X射线束。 X射线束的有效传递和利用取决于这些光学器件的质量和性能。影响最佳性能的关键问题之一是与光学表面理想形状的偏离。这种偏差可能是由于制造上的限制,但通常是由于基板上的热和/或机械力引起的。因此,了解变形和用于最小化不希望的变形的方法可以确保可接受的光学性能。本论文致力于对承受热和/或机械载荷的光学基板进行严格的分析和设计优化。光学基板可以从入射光束接收高达几千瓦的热负荷。一部分热量被基材吸收,其余热量被反射。为了除去吸收的热量,基板在内部或外部进行冷却。在任何一种情况下,基板中产生的温度分布都会产生热变形,从而使反射的X射线束方向错误。通过基板的最佳设计及其冷却,可以将这种不良的热变形降至最低。建立了关于最佳接触冷却如何使热变形最小化的理论公式。进行数值计算以验证分析结果。通过检查冷却和基板几何形状配置来实现设计优化。光学基板也可以机械地弯曲成凹形以聚焦发散的入射X射线束。期望的形状可以是圆柱形或椭圆形。但是,由于泊松效应,抗弹性弯曲发生在相反的方向。结果,基板弯曲成鞍形。因此,当入射的X射线束在一个方向上聚焦时,其在正交方向上扩展。最小化抗弹性弯曲的最佳设计很重要。此外,在晶体光学基板中,弯曲取决于晶体平面和切割取向。本文还描述了晶体各向异性及其对可弯曲光学器件变形的影响。提供了分析,数值和实验结果。可以在最佳光学设计中有利地利用晶体各向异性以最小化或最大化抗弹性弯曲。

著录项

  • 作者

    Li, Yaming.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Engineering Mechanical.; Applied Mechanics.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业 ; 应用力学 ; 光学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号