首页> 外文学位 >Mathematical modelling and numerical simulations of chemically reacting turbulent jets.
【24h】

Mathematical modelling and numerical simulations of chemically reacting turbulent jets.

机译:化学反应湍流射流的数学建模和数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Chemically reacting turbulent flows are investigated using numerical techniques. The main objectives of this work could be classified into two categories: (1) To understand the impact of gravity on transitional and turbulent jet flames. (2) To develop models and algorithms for accurate and efficient simulations of highspeed turbulent flows with hydrocarbon combustion.; In (1), both Direct Numerical Simulations (DNS), and Large Eddy Simulations (LES) of turbulent jet flames have been performed under different gravity conditions. Simplified chemistry without using a model was employed in DNS, while in LES the Filtered Mass Density Function (FMDF) method was used as a closure for the composition and reaction of methane/air combustion.; Both the DNS, and the LES results are consistent with previous findings and indicate that in the absence of gravity, combustion damps the flow instability; hence reduces "turbulence production" and jet growth. However, in the "finite-gravity" conditions, combustion generated density variations may promote turbulence and enhance both the mixing and the combustion through buoyancy effects. Our results also indicate that the gravity effects on a transitional/turbulent jet flame is not limited to large-scale flame flickering, and there is a significant impact on small-scale turbulence and mixing as well.; Furthermore, the analysis of compositional flame structures suggests that the finite-rate chemistry effects are more significant in finite-gravity conditions than in zero-gravity.; In (2) the LES/FMDF method is extended towards multi-step chemistry with realistic thermodynamic properties, such that the predictions could be compared with laboratory flame measurements. In LES/FMDF, the effects of chemical reactions appear in closed forms, allowing for a reliable prediction of complex turbulent reacting flows. The consistency of the Eulerian and the Lagrangian solutions are discussed, and an efficient algorithm for parallelization of the hybrid code is presented.; Comparisons with the Sandia's piloted methane jet flames (flame D and F) are performed and good agreements in the case of the near-equilibrium flame D have been achieved with a flamelet-based chemistry model.; Finite-rate reduced kinetics in the form of the global 1-step, and multi-step kinetics are employed as well. While reasonable predictions have been made in the case of flame D using the 1-step reaction, the extinction predicted by the multi-step methods is more pronounced compared to the experimental measurements. The observations are analyzed and the parameters responsible for this difference are identified.
机译:使用数值技术研究了湍流的化学反应。这项工作的主要目标可以分为两类:(1)了解重力对过渡和湍流射流火焰的影响。 (2)开发模型和算法,以精确有效地模拟碳氢化合物燃烧引起的高速湍流。在(1)中,湍流射流火焰的直接数值模拟(DNS)和大涡模拟(LES)都在不同的重力条件下进行。在DNS中使用了不使用模型的简化化学方法,而在LES中,使用了过滤质量密度函数(FMDF)方法来封闭甲烷/空气燃烧的组成和反应。 DNS和LES结果均与以前的发现一致,并表明在没有重力的情况下,燃烧会减弱流动的不稳定性。因此减少了“湍流产生”和射流的增长。但是,在“有限重力”条件下,燃烧产生的密度变化可能会促进湍流,并通过浮力效应增强混合和燃烧。我们的结果还表明,重力对过渡/湍流射流火焰的影响不仅限于大范围的火焰闪烁,而且对小范围的湍流和混合也有重大影响。此外,对组成火焰结构的分析表明,有限重力条件下的有限速率化学作用比零重力条件下的影响更大。在(2)中,LES / FMDF方法扩展到具有逼真的热力学性质的多步化学,因此可以将预测结果与实验室火焰测量结果进行比较。在LES / FMDF中,化学反应的影响以封闭形式出现,从而可以可靠地预测复杂的湍流反应流。讨论了欧拉解和拉格朗日解的一致性,并提出了一种有效的混合码并行化算法。进行了与桑迪亚的甲烷引燃火焰(D和F火焰)的比较,并且在基于小火焰的化学模型中,在接近平衡火焰D的情况下,已经取得了良好的协议。整体1步形式的有限速率降低的动力学,以及多步动力学也被采用。尽管对于使用步骤1反应的火焰D做出了合理的预测,但与实验测量值相比,通过多步法预测的消光更为明显。分析观察结果并确定造成这种差异的参数。

著录项

  • 作者

    Mehravaran, Kian.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号