首页> 外文学位 >Using neuromorphic optical sensors for spacecraft absolute and relative navigation.
【24h】

Using neuromorphic optical sensors for spacecraft absolute and relative navigation.

机译:使用神经形态光学传感器进行航天器的绝对和相对导航。

获取原文
获取原文并翻译 | 示例

摘要

We develop a novel attitude determination system (ADS) for use on nano spacecraft using neuromorphic optical sensors. The ADS intends to support nano-satellite operations by providing low-cost, low-mass, low-volume, low-power, and redundant attitude determination capabilities with quick and straightforward onboard programmability for real time spacecraft operations. The ADS is experimentally validated with commercial-off-the-shelf optical devices that perform sensing and image processing on the same circuit board and are biologically inspired by insects' vision systems, which measure optical flow while navigating in the environment. The firmware on the devices is modified to both perform the additional biologically inspired task of tracking objects and communicate with a PC/104 form-factor embedded computer running Real Time Application Interface Linux used on a spacecraft simulator. Algorithms are developed for operations using optical flow, point tracking, and hybrid modes with the sensors, and the performance of the system in all three modes is assessed using a spacecraft simulator in the Advanced Autonomous Multiple Spacecraft (ADAMUS) laboratory at Rensselaer. An existing relative state determination method is identified to be combined with the novel ADS to create a self-contained navigation system for nano spacecraft. The performance of the method is assessed in simulation and found not to match the results from its authors using only conditions and equations already published. An improved target inertia tensor method is proposed as an update to the existing relative state method, but found not to perform as expected, but is presented for others to build upon.
机译:我们开发了一种新型姿态确定系统(ADS),用于使用神经形态光学传感器的纳米航天器。 ADS旨在通过提供低成本,低质量,小体积,低功率和冗余姿态确定功能以及对航天器实时操作的快速而直接的机载可编程性,来支持纳米卫星的运行。 ADS已通过现成的商用光学设备进行了实验验证,这些设备可在同一电路板上执行传感和图像处理,并受到昆虫视觉系统的生物学启发,该昆虫视觉系统可在环境中导航时测量光流。修改了设备上的固件,以执行跟踪目标的其他生物学启发任务,并与运行在航天器模拟器上的实时应用程序接口Linux的PC / 104尺寸嵌入式计算机通信。开发了使用光流,点跟踪和传感器混合模式进行运算的算法,并使用位于伦斯勒(Rensselaer)的高级自主多宇宙飞船(ADAMUS)实验室中的太空飞船模拟器评估了系统在所有三种模式下的性能。确定了一种现有的相对状态确定方法,将其与新型ADS相结合,以创建一个用于纳米航天器的独立导航系统。该方法的性能在仿真中进行了评估,发现仅使用已发布的条件和方程与作者的结果不符。提出了一种改进的目标惯性张量方法,作为对现有相对状态方法的更新,但发现其效果不如预期,但已提出供其他人借鉴。

著录项

  • 作者

    Shake, Christopher M.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Mechanical.;Engineering Aerospace.
  • 学位 M.S.
  • 年度 2013
  • 页码 81 p.
  • 总页数 81
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号