首页> 外文学位 >Development of a high-throughput fungal biofilm chip and associated screening methodology for the identification of novel antifungal drug candidates.
【24h】

Development of a high-throughput fungal biofilm chip and associated screening methodology for the identification of novel antifungal drug candidates.

机译:开发高通量真菌生物膜芯片和相关的筛选方法,用于鉴定新型抗真菌药物候选物。

获取原文
获取原文并翻译 | 示例

摘要

Candida albicans remains the most frequent causative agent of Candidiasis, the most frequent fungal infection and now the third most common nosocomial infection in the US hospitals. These infections have emerged as a growing threat to human health, especially for an increasing number of immunocompromised individuals who are at risk for opportunistic infections. The high mortality rate associated with these fungal infections is in part due to the limited arsenal of antifungal drugs. Another major reason is because most forms of candidiasis are associated with a biofilm mode of growth, and cells within these biofilms are intrinsically resistant to most antifungal agents. We have developed a high-density microarray platform consisting of nano-biofilms of C. albicans. Briefly, a robotic micro-arrayer is used to print yeast cells of C. albicans (strain SC5314) onto a solid substrate. During printing, the yeast cells are enclosed in a three dimensional (3D) matrix using a volume as low as 50 nL and immobilized on modified glass substrates. After initial printing, the slides are incubated at 37 °C for 24 hours to allow for biofilm development. During this period the spots grow into fully formed "nanobiofilms" that display typical structural and phenotypic characteristics associated with mature C. albicans biofilms (i.e. morphological complexity, 3D architecture and drug resistance). In its final format, a C. albicans biofilm chip is composed of 768 equivalent and spatially distinct biofilms on a single glass slide; and multiple chips can be printed and processed simultaneously. A fluorometric assay with FUN1 viability stain is then used to determine the metabolic activity of the cells within each of the nanobiofilms, the intensity of which is determined using a microarray scanner. This fungal chip is ideally suited for use in true high throughput screening for antifungal drug discovery. Compared to current industry standard (namely the 96-well microtiter plate model of biofilm formation), this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize or eliminate labor intensive steps, and dramatically reduce assay costs. Such a chip will speed up the drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.
机译:白色念珠菌仍然是念珠菌病最常见的病原体,真菌感染最常见,现在是美国医院中第三常见的医院感染。这些感染已成为对人类健康日益增长的威胁,特别是对于越来越多的存在机会感染风险的免疫功能低下的个体而言。与这些真菌感染相关的高死亡率部分是由于抗真菌药库的限制。另一个主要原因是因为大多数形式的念珠菌病都与生物膜的生长方式有关,并且这些生物膜中的细胞对大多数抗真菌剂具有内在抗性。我们已经开发了由白色念珠菌的纳米生物膜组成的高密度微阵列平台。简而言之,使用机器人微阵列仪将白色念珠菌的酵母细胞(菌株SC5314)印在固体基质上。在印刷过程中,酵母细胞使用低至50 nL的体积封装在三维(3D)矩阵中,并固定在改性的玻璃基板上。初次印刷后,将载玻片在37°C下孵育24小时,以使生物膜显影。在此期间,斑点成长为完全形成的“纳米生物膜”,显示出与成熟的白色念珠菌生物膜相关的典型结构和表型特征(即形态复杂性,3D结构和耐药性)。在其最终格式中,白色念珠菌生物膜芯片由单个载玻片上的768个当量且空间上不同的生物膜组成。可以同时打印和处理多个芯片。然后使用具有FUN1活力染色剂的荧光测定法确定每个纳米生物膜内细胞的代谢活性,并使用微阵列扫描仪确定其强度。该真菌芯片非常适合用于抗真菌药物发现的真正高通量筛选。与目前的行业标准(即生物膜形成的96孔微量滴定板模型)相比,这种真菌生物膜芯片在小型化和自动化方面具有优势,可以减少试剂的使用和分析时间,减少或消除劳动密集型步骤,以及大大降低了测定成本。这样的芯片将通过同时快速,便捷和廉价地筛选数十万种化合物来加快药物开发过程。

著录项

  • 作者

    Srinivasan, Anand.;

  • 作者单位

    The University of Texas at San Antonio.;

  • 授予单位 The University of Texas at San Antonio.;
  • 学科 Engineering Biomedical.
  • 学位 M.S.
  • 年度 2010
  • 页码 68 p.
  • 总页数 68
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号