首页> 外文学位 >Biophysical and biochemical characterization of ArnA: A required enzyme in the polymyxin resistance pathway.
【24h】

Biophysical and biochemical characterization of ArnA: A required enzyme in the polymyxin resistance pathway.

机译:ArnA的生物物理和生化特性:多粘菌素抗性途径中的必需酶。

获取原文
获取原文并翻译 | 示例

摘要

Gram-negative bacteria can modify the structure of lipid A in their outer membrane with the positively charged 4-amino-4-deoxy-L-arabinose (Ara4N). Such modification results in resistance to cationic antimicrobial peptides of the innate immune system, and certain antibiotics, such as polymyxin. ArnA is a key enzyme in the lipid A modification pathway, and its deletion abolishes both the Ara4N-lipid A modification, and polymyxin resistance. A clear understanding of the ArnA structure and mechanism is crucial for the design of selective inhibitors of the pathway. Such inhibitors may prove particularly useful in treating chronic infections like those caused by bacteria in the lungs of Cystic Fibrosis (CF) patients.;ArnA is a bifunctional enzyme. It can catalyze (i) the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcA) to UDP-4-ketopentose (UDP-Ara4O) and (ii) the N-10-formyltetrahydrofolate dependent formylation of UDP-4-amino-4-deoxy-L-arabinose (UDP-Ara4N). We show that the transformylation activity is contained, exclusively, in the 300 amino acid N-terminal domain of ArnA, and the NAD+-dependent decarboxylating activity is contained in the 360 amino acid C-terminal domain of the enzyme. The crystal structures of the unliganded individual domains, as well as the structures of the liganded (with ATP/UDP-GlcA and UDP-GlcA alone) full-length ArnA from E. coli and S. thyphimurium are presented in this work.;A mechanism for the N-terminal transformylation reaction is proposed based on mutational and structural data. It is also proposed that the dehydrogenation reaction catalyzed by the C-terminus of ArnA follows an ordered mechanism in which UDP-GlcA is the first substrate to bind, inducing a large conformational change that opens the active site for NAD+. Sequence comparisons of the ArnA dehydrogenase domain with enzymes annotated as UDP-xylose synthases and other members of the Short Chain Dehydrogenase/Reductase (SDR) family allowed the identification of catalytic residues. Three residues---T 432, Y463, K467 are implicated in the oxidation of UDP-GlcA to UDP-4-keto glucuronic acid. Mutational studies confirm that two additional residues---R619 and S433 facilitate the decarboxylation of the UDP-4-keto glucuronic acid intermediate to yield the sugar nucleotide UDP-Ara4O. The above-mentioned results of this study have important implications for the design of selective inhibitors of ArnA.
机译:革兰氏阴性细菌可以用带正电荷的4-氨基-4-脱氧-L-阿拉伯糖(Ara4N)修饰其外膜中脂质A的结构。这种修饰导致对先天免疫系统的阳离子抗菌肽和某些抗生素(例如多粘菌素)的抗性。 ArnA是脂质A修饰途径中的关键酶,其缺失消除了Ara4N-脂质A修饰和多粘菌素抗性。清楚了解ArnA结构和机制对于设计该途径的选择性抑制剂至关重要。这类抑制剂可能被证明在治疗慢性感染中特别有用,例如由囊性纤维化(CF)患者肺部细菌引起的慢性感染。ArnA是一种双功能酶。它可以催化(i)UDP-葡萄糖醛酸(UDP-GlcA)氧化脱羧为UDP-4-酮戊糖(UDP-Ara4O)和(ii)UDP-4-氨基-4的N-10-甲酰基四氢叶酸甲酰化-脱氧-L-阿拉伯糖(UDP-Ara4N)。我们表明,ArnA的300个氨基酸的N末端结构域中仅包含转化作用,而该酶的360个氨基酸的C末端结构域中包含NAD +依赖性脱羧活性。这项工作介绍了来自大肠杆菌和胸腺沙门氏菌的未配体单个结构域的晶体结构,以及配体的全长ArnA(仅含ATP / UDP-GlcA和UDP-GlcA)的结构。基于突变和结构数据,提出了N-末端转化反应的机理。还提出了由ArnA的C末端催化的脱氢反应遵循一种有序的机制,其中UDP-GlcA是第一个结合的底物,诱导了一个大的构象变化,从而打开了NAD +的活性位点。 ArnA脱氢酶结构域与注释为UDP-木糖合酶的酶和短链脱氢酶/还原酶(SDR)家族其他成员的序列比较可鉴定催化残基。 UDP-GlcA氧化为UDP-4-酮基葡萄糖醛酸涉及三个残基--- T 432,Y463,K467。突变研究证实,另外两个残基--- R619和S433有助于UDP-4-酮葡萄糖醛酸中间体的脱羧,从而产生糖核苷酸UDP-Ara4O。这项研究的上述结果对ArnA选择性抑制剂的设计具有重要意义。

著录项

  • 作者

    Gatzeva-Topalova, Petia Z.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Chemistry Biochemistry.;Biophysics General.;Biology Microbiology.;Biophysics Medical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号