首页> 外文学位 >Low-power, gigahertz clock generation and distribution using injection-locked oscillators.
【24h】

Low-power, gigahertz clock generation and distribution using injection-locked oscillators.

机译:使用注入锁定振荡器的低功耗千兆赫兹时钟生成和分配。

获取原文
获取原文并翻译 | 示例

摘要

The generation and distribution of high speed and high quality clock signals have become increasingly important in high performance microprocessors, wireline communications and wireless communications. In multi-gigahertz frequency range, conventional clocking techniques have encountered several design challenges in terms of power consumption, skew and jitter. Injection-locking is a promising technique to address these design challenges for gigahertz clocking. This dissertation presents our studies of gigahertz, high performance, low power clock generation and distribution using injection-locked frequency dividers (ILFDs), injection-locked frequency multipliers (ILFMs) and injection-locked clock distribution networks (ILCs). Chip prototypes in 0.18micro m standard digital CMOS technologies are demonstrated for the following gigahertz clocking circuits.;For gigahertz clock generation, we introduced a phase tuning scheme for an ILFD-based dual-phase signal generator. The phase tuning capability in this scheme comes from the tunable phase transfer characteristics of injection-locked frequency dividers. Implemented with a frequency-tunable double-balanced divide-by-two injection-locked frequency divider, the dual-phase signal generator prototype achieves 100° differential phase tuning range around quadrature with generated signal frequency of 5 GHz.;For gigahertz frequency division, we introduced a divide-by-odd-number injection-locked frequency divider to address the division ratio limitation of conventional injection-locked frequency dividers. With differential injection and harmonic filtering, this new ILFD topology maintains the fully differential nature of the output signal, while at the same time achieving effective mixing between the injected odd harmonics and output oscillation. 5% locking range without frequency tuning is achieved for the circuit prototype of this topology working at input frequency of 16-18 GHz.;For gigahertz frequency multiplication, we introduced an injection-locked oscillator to work as a high-gain, high-Q harmonic filter for conventional harmonicgeneration-and-filtering frequency multipliers. This new approach achieves significantly better undesired harmonic suppression for frequency multipliers built with lossy digital CMOS processes. Frequency tunability of injection-locked oscillators also enables multi-mode operations for such injection-locked frequency multipliers. The circuit prototype of such a frequency multiplier achieves multiply by 2 and 3 dual-mode operation with undesired harmonic suppressions better than 30 dB achieved for both modes.;For gigahertz clock distribution, we proposed an injection-locked clocking scheme using injection-locked oscillators (ILOs) as the local clock regenerators. Because of an ILO's capability to be locked by a small input signal, this new approach reduced a large amount of clock buffers in global clock distribution. This not only reduces the power consumption, but also reduces the skew and jitter which cone from these clock buffers. The phase tunability of ILOs can also be utilized to achieve the deskew function between different clock domains. Three circuit prototypes of ILCs working at several gigahertz have been built. They demonstrated better power and jitter performance together with the built-in deskew capability of ILCs.
机译:高速和高质量时钟信号的产生和分配在高性能微处理器,有线通信和无线通信中变得越来越重要。在数千兆赫兹的频率范围内,常规时钟技术在功耗,偏斜和抖动方面遇到了一些设计挑战。注入锁定是解决千兆赫时钟这些设计挑战的有前途的技术。本文介绍了我们对使用注入锁定分频器(ILFD),注入锁定倍频器(ILFM)和注入锁定时钟分配网络(ILC)的千兆赫兹,高性能,低功耗时钟生成和分配的研究。针对以下千兆赫兹时钟电路演示了采用0.18微米标准数字CMOS技术的芯片原型。为了生成千兆赫兹时钟,我们为基于ILFD的双相信号发生器引入了相位调谐方案。该方案中的相位调谐能力来自注入锁定分频器的可调相移特性。通过使用可调频双平衡二分频注入锁定分频器实现,双相信号发生器原型可实现围绕正交的100°差分相位调谐范围,并产生5 GHz的信号频率。我们推出了一种除数注入锁定分频器,以解决传统注入锁定分频器的分频比限制。通过差分注入和谐波滤波,这种新的ILFD拓扑结构可保持输出信号的完全差分特性,同时实现注入的奇次谐波与输出振荡之间的有效混合。在输入频率为16-18 GHz的情况下,此拓扑的电路原型可实现5%的锁定范围,而无需进行频率调谐;对于千兆赫兹的倍频,我们引入了注入锁定振荡器,可作为高增益,高Q用于常规谐波生成和滤波倍频器的谐波滤波器。对于采用有损数字CMOS工艺构建的倍频器,这种新方法可实现更好的不希望的谐波抑制。注入锁定振荡器的频率可调性还使这种注入锁定倍频器能够进行多模式操作。这种倍频器的电路原型可实现2和3双模运算的乘法运算,并且两种模式均实现了优于30 dB的不希望有的谐波抑制。 (ILO)作为本地时钟再生器。由于ILO可以通过较小的输入信号锁定,因此这种新方法减少了全局时钟分配中的大量时钟缓冲区。这不仅降低了功耗,还减少了来自这些时钟缓冲器的偏斜和抖动。 ILO的相位可调性也可用于实现不同时钟域之间的去歪斜功能。已经构建了工作在几GHz的ILC的三个电路原型。它们展示了更好的功率和抖动性能,以及ILC的内置去歪斜功能。

著录项

  • 作者

    Zhang, Lin.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号