首页> 外文学位 >Addressing Fatty Acids Toxicity and Production in Biocatalysts.
【24h】

Addressing Fatty Acids Toxicity and Production in Biocatalysts.

机译:解决脂肪酸在生物催化剂中的毒性和产生。

获取原文
获取原文并翻译 | 示例

摘要

Fatty acids recently gain more attentions due to its potentials as fuel and chemicals. However, they are toxic to biocatalysts like many other biofuel compounds. Understanding the inhibitory mechanism can help to improve the production of fatty acids.;In current study, the toxicity of short chain fatty acids: hexanoic, octanoic, and decanoic acid on Saccharomyces. cerevisiae and Escherichia.coliwere inverstigated with a focus on octanoic acid. The toxicity of fatty acids (hexanoic, octanoic, and decanoic acid) in S. cerevisiae is dependent on doses and chain lengths, and also leads to damaged membrane integrity, which was confirmed by increased membrane leakage. This induction of membrane leakage could be significantly decreased by introducing endogenous oleic acid into cell membrane. Although E.coli cells showed different response from S. cerevisiae when stressed by hexanoic, octanoic, and decanoic acid, similar disrupted membrane integrity also occurred under octanoic acid stress. Futhermore, increased saturated:unsaturated lipid ratio in E. coli was also reported. Thus, manipulating membrane lipid to restore membrane integrity possibly overcome toxicity of fatty acids and improve production.;Medium chain length carboxylic acids drive more attention because of their broad application in our life. In this thesis, Transcriptomic analysis was applied to construct a robust E.coli strain for production of medium chain length fatty acids. The first generation engineered strain ML103 (pXZ18Z) (deletion of fatty acid beta-oxidation pathway, over-expression of fatty acid elongation gene (fabZ) and acyl-ACP thioesterase from R. communis) was used as a host strain to study the possible pathway. Transcriptome analysis revealed a series of disturbed genes and transcription factors including stress response, biofilm, transporters, nitrogen limitation and membrane disruption.
机译:脂肪酸由于其作为燃料和化学物质的潜力,最近引起了更多关注。但是,它们像许多其他生物燃料化合物一样对生物催化剂有毒。了解抑制机制可以帮助改善脂肪酸的产生。;在当前的研究中,短链脂肪酸:己酸,辛酸和癸酸对酿酒酵母的毒性。重点研究了辛酸和大肠埃希氏菌。酿酒酵母中脂肪酸(己酸,辛酸和癸酸)的毒性取决于剂量和链长,还会导致膜完整性受损,这可通过增加膜泄漏来证实。通过将内源性油酸引入细胞膜可以大大减少这种对膜泄漏的诱导。尽管当受到己酸,辛酸和癸酸胁迫时,大肠杆菌细胞显示出与酿酒酵母不同的反应,但在辛酸胁迫下,类似的膜完整性也发生了破坏。此外,还报道了大肠杆菌中饱和脂质:不饱和脂质的比率增加。因此,操纵膜脂质以恢复膜完整性可能克服脂肪酸的毒性并提高产量。中链长度的羧酸因其在我们生活中的广泛应用而受到越来越多的关注。本文运用转录组学技术,构建了一种稳定的大肠杆菌菌株,用于生产中等链长的脂肪酸。以第一代工程菌株ML103(pXZ18Z)(删除脂肪酸β-氧化途径,过度表达脂肪酸延伸基因(fabZ)和来自R. communis的酰基ACP硫酯酶)作为宿主菌株来研究可能的菌株途径。转录组分析揭示了一系列受干扰的基因和转录因子,包括应激反应,生物膜,转运蛋白,氮限制和膜破坏。

著录项

  • 作者

    Liu, Ping.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号