首页> 外文学位 >The effect of carpel and stamen primordia-targeted ethylene production and perception on sex expression in melon (Cucumis melo L.).
【24h】

The effect of carpel and stamen primordia-targeted ethylene production and perception on sex expression in melon (Cucumis melo L.).

机译:心皮和雄蕊原基针对乙烯的生产和感知对瓜(Cucumis melo L.)性别表达的影响。

获取原文
获取原文并翻译 | 示例

摘要

Commercial melons (Cucumis melo L.) are typically andromonoecious, first producing vegetative nodes followed by a male flower-only phase, then a male and bisexual flower phase. Unisexuality arises from differential suppression of sex organ primordia, and ethylene is a key factor modulating sex expression. Thus, a comprehensive model of melon sex determination must include sex organ suppression developmental stages, known sex genes and phenotypes, and ethylene effects. Previous work in our lab using transgenic melons expressing the ethylene receptor mutant etr1-1 under floral primordia-targeted promoters indicated stamen primordia, not carpel primordia, need to perceive ethylene for carpel development. Previous research reported that the G locus, responsible for carpel suppression, encodes a WIP1 transcription factor, and the A locus, responsible for stamen suppression in bisexual flowers, encodes an ethylene biosynthetic enzyme gene, 1-aminocyclopropane-1-carboxylic acid synthase (ACS). However, it is unknown how molecular ethylene production influences carpel development promotion.;To further examine the roles of floral organ primordia in promoting carpel development, transgenic melons were produced targeting ACS expression to either stamen and petal primordia (AP3::ACS ), or carpel and nectary primordia (CRC::ACS). AP3::ACS melons showed increased A gene expression, and decreased G expression. Increased femaleness was observed, manifested as increased carpel-bearing buds, decreased male buds, male-only phase loss, and gain of a bisexual-only phase not seen in wild type. Microscopic analysis of apices showed reduced progression of floral buds into sex determination stages. In contrast, CRC::ACS melons showed no difference in sex expression patterns or sex gene expression. These results, coupled with knowledge of sex gene identities and sex phenotypes, led to an integrated model of melon floral sex determination.;Increased femaleness was also observed in transgenic melons targeting etr1-1 to carpel and nectary primordia (CRC::etr1-1). To investigate if this phenotype is useful for increased and earlier fruit set, CRC::etr1-1 melons were examined in the field. Transgenic plants had earlier and increased number of carpel-bearing flowers and fruit set. However, CRC::etr1-1 fruit were smaller, resulting in equivalent kg/plot, and showed either earlier ripening (line M5), or no obvious external ripening (line M15). Externally green M15 fruit had extensive internal ripening with elevated internal ethylene levels, equivalent to wild type orange fruit. Expression of etr1-1 was higher in M15 exocarp compared to mesocarp, likely leading to external ripening inhibition.;It has been proposed that, in addition to the two major sex loci, one or more modifiers act to stabilize gynoecious and hermaphrodite genotypes. Other members of the ACS or ACC oxidase (ACO; ethylene biosynthetic enzyme) families may modulate sex determination. To evaluate gene expression within different sex genotypes, hermaphrodite (ggaa) and monoecious (G-A-) lines were produced from a gynoecious (ggAA) and andromonoecious (GGaa) cross. F1 progeny were monoecious as predicted and F2 sex phenotype segregation ratios were consistent with a four gene model. Three new ACS gene members were identified using the melon genome; expression of the 7 ACS and 3 ACO genes was analyzed in apices of different genotypes. All ACS and ACO members showed higher expression in gynoecious and hermaphrodite apices compared to andromonoecious and monoecious. Together, these studies provide further insight into ethylene perception and production influences in sex expression in melon.
机译:商业甜瓜(Cucumis melo L.)通常具雄性,首先产生营养节,然后产生仅雄花期,然后是雄性和双性花期。同性恋是由性器官原基的差异抑制引起的,而乙烯是调节性别表达的关键因素。因此,一个完整的瓜类性别决定模型必须包括性器官抑制发育阶段,已知性基因和表型以及乙烯效应。在我们实验室中,以前的工作是在表达花基原基的启动子下使用表达乙烯受体突变体etr1-1的转基因瓜子,表明雄蕊原基而不是心皮原基需要感知乙烯用于心皮发育。先前的研究报道称,负责抑制心皮的G位点编码WIP1转录因子,负责抑制双性恋花中雄蕊的A位点编码乙烯生物合成酶基因1-氨基环丙烷-1-羧酸合酶(ACS) )。但是,尚不知道分子乙烯的生产如何影响心皮发育促进。为了进一步检查花器官原基在促进心皮发育中的作用,产生了将ACS表达靶向雄蕊和花瓣原基的转基因瓜子(AP3 :: ACS),或者心皮和蜜腺原基(CRC :: ACS)。 AP3 :: ACS甜瓜显示A基因表达增加,而G表达减少。观察到雌性增加,表现为带有心皮的芽增加,雄芽减少,仅雄性阶段损失,以及在野生型中未见的仅双性恋阶段。顶点的显微镜分析显示,花蕾进入性别决定阶段的进程减少。相反,CRC :: ACS甜瓜在性别表达方式或性别基因表达上没有差异。这些结果,加上对性基因身份和性表型的了解,导致建立了瓜花性决定的整合模型。;在将etr1-1靶向心皮和蜜腺原基的转基因瓜中也观察到雌性增加(CRC :: etr1-1 )。为了研究这种表型是否对增加果实早熟率有用,在田间检查了CRC :: etr1-1甜瓜。转基因植物的心皮花和坐果的数量早且增加了。但是,CRC :: etr1-1果实较小,每千克果重相同,并且显示出较早的成熟(M5行)或没有明显的外部成熟(M15行)。外部绿色M15果实具有广泛的内部成熟度,内部乙烯含量升高,与野生型橙色果实相当。 M15外果皮中etr1-1的表达高于中果皮,可能导致外部成熟抑制。;有人提出,除了两个主要的性位点外,一种或多种修饰剂还可以稳定雌雄同体和雌雄同体的基因型。 ACS或ACC氧化酶(ACO;乙烯生物合成酶)家族的其他成员可能会影响性别确定。为了评估不同性别基因型中的基因表达,从雌雄同体(ggAA)和雄雄同体(GGaa)杂交产生了雌雄同体(ggaa)和雌雄同体(G-A-)品系。 F1后代如预期的那样雌雄同体,而F2性别表型分离率与四个基因模型一致。使用甜瓜基因组鉴定了三个新的ACS基因成员;分析了7种ACS和3种ACO基因在不同基因型中的表达。与雄雄同株和雌雄同株相比,所有ACS和ACO成员在雌雄同株和雌雄同体的尖头中均表现出较高的表达。总之,这些研究为了解乙烯对甜瓜中性表达的感知和生产影响提供了进一步的见解。

著录项

  • 作者

    Taft, Jessica Ann.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Biology Molecular.;Biology Genetics.;Agriculture Horticulture.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号