首页> 外文学位 >Synthesis and characterization of low-valent uranium alkyl complexes: Exploring the reactivity of uranium-carbon bonds for small molecule activationa.
【24h】

Synthesis and characterization of low-valent uranium alkyl complexes: Exploring the reactivity of uranium-carbon bonds for small molecule activationa.

机译:低价铀烷基络合物的合成和表征:探索铀碳键对小分子活化的反应性a。

获取原文
获取原文并翻译 | 示例

摘要

The synthesis of a family of rare uranium(III) alkyl complexes, Tp*2UR (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate) (R = CH 2Ph, CH2SiMe3, CH3, (CH3) 3CH3) by salt metathesis from Tp*2UI and a series of potassium and sodium alkylating agents is presented. Complexes herein are routinely characterized by 1H NMR, infrared and electronic absorption spectroscopies, and X-ray crystallography. The reactivity of these complexes with a variety of organic substrates, including terminal acetylides, amines, a variety of phenols, and benzene thiol, has been explored. This has resulted in the quantitative formation of a series of uranium(III)-element bonds, of the type Tp*2UR, via protonation of the alkyl substituent.;The studies of the reactivity of U(III) alkyl complexes are extended through exposure to a variety of C=E (E = O, S) multiple bond containing substrates. Treating the U(III) alkyl complex with carbon dioxide results in insertion into the uranium-carbon bond to generate Tp*2(O2CCH2Ph). The addition of 1 atm of CO2 to the bis-Tp* U(III) derivatives results in the insertion of the greenhouse gas. In analogy, the reactivity of carbon disulfide was evaluated. CS2 was successfully inserted across the uranium alkyl, amide, and thiol linkages. Additionally, the reactivity of Tp* 2UCH2Ph with various ketones and acetates was explored.;Addition of a series of organic oxidants including pyridine-n-oxide, sulfur, and a variety of azides and diazomethanes, results in the quantitative formation of Tp*2U(E2-) (E = O, S2, NR, N-NCR2) and half an equivalent of bibenzyl. This type of reactivity shows the unique character of the U(III) carbon bond and how it can be used to facilitate two electron processes on uranium through reductive coupling of the alkyl substituent. This results in the alkyl complex functioning as a source of "Tp*2U".;The synthesis and reactivity of a rare, U(III) bis alkyl complex, Tp* 2U(CH2Ph)2(THF) is summarized in chapter four. Upon exposure of this alkyl complex to an equivalent of benzophenone or mesityl azide, oxidation occurs, resulting in the formation of a U+4 product. Traditional reactivity of the bis alkyl complex towards protonolysis has been presented as well. Furthermore, the bis alkyl complex supports the first catalytic example of hydrosilyation of terminal olefins by uranium.;The chemistry of uranium with redox-active amido phenolate ligands is highlighted in Chapter 5 of this work. A series of mono amido phenolate uranium complexes have been synthesized, including (dippisq•)UI 3(THF)2, (dippap)UI2(THF)2, ( dippap)U(CH2Ph)2(THF)2, and Cp*2U( dippap). Bis(amido-phenolate) U(IV) species have been synthesized and isolated as (Rap)2U(THF) (R = tBu, DIPP). Subsequent reactivity with I2 produces the oxidative addition products (Risq) 2UI2(THF), which establishes the [ap] ligand framework as viable for supporting two electron processes on uranium.;The final entry of this work focuses on the development of asymmetric ligand frameworks for a series of uranium complexes. Chiral species are important for the development of catalysts that mediate a variety types of asymmetric processes. A series of mixed ligand uranium(III) complexes, bis(Tp R) and TpR/Cp*, were synthesized and characterized, and subsequent alkylation chemistry was explored. Likewise, a series of mixed redox-active and CpR ancillary species were generated to serve as a platform for the isolation of tetravalent uranium alkyl complexes. Finally, the synthesis of uranium(III) and (IV) complexes supported by the tris(oxazoline)borate ligands are reported.
机译:通过盐复分解反应合成一族稀有铀(III)烷基络合物Tp * 2UR(Tp * =氢三(3,5-二甲基吡唑基)硼酸酯)(R = CH 2Ph,CH2SiMe3,CH3,(CH3)3CH3)介绍了Tp * 2UI和一系列钾和钠烷基化剂。本文的配合物通常通过1 H NMR,红外和电子吸收光谱以及X射线晶体学表征。已经探索了这些配合物与多种有机底物的反应性,包括末端乙炔化物,胺,多种酚和苯硫醇。这导致通过烷基取代基的质子化形成一系列Tp * 2UR类型的铀(III)元素键。; U(III)烷基络合物的反应性研究通过暴露得以扩展到各种C = E(E = O,S)含多个键的底物。用二氧化碳处理U(III)烷基络合物会导致其插入铀-碳键中,从而生成Tp * 2(O2CCH2Ph)。在bis-Tp * U(III)衍生物中添加1个大气压的二氧化碳会导致温室气体的插入。类似地,评估了二硫化碳的反应性。 CS2已成功插入铀烷基,酰胺和硫醇键之间。此外,还探索了Tp * 2UCH2Ph与各种酮和乙酸盐的反应性;添加一系列有机氧化剂,包括吡啶正氧化物,硫以及各种叠氮化物和重氮甲烷,导致Tp * 2U的定量形成(E2-)(E = O,S2,NR,N-NCR2)和一半当量的联苄基。这种类型的反应性显示了U(III)碳键的独特特征,以及如何通过烷基取代基的还原偶联将其用于促进铀上的两个电子过程。这导致烷基络合物充当“ Tp * 2U”的来源。第四章概述了稀有的U(III)双烷基络合物Tp * 2U(CH2Ph)2(THF)的合成和反应性。将该烷基络合物暴露于当量的二苯甲酮或三甲基叠氮化物时,发生氧化,导致形成U + 4产物。还已经提出了双烷基络合物对质子分解的传统反应性。此外,双烷基络合物支持铀将末端烯烃氢化硅烷化的第一个催化实例。该工作的第5章着重介绍了铀与氧化还原活性酰胺基酚盐配体的化学反应。已经合成了一系列单酰胺基酚盐铀络合物,包括(dippisq•)UI 3(THF)2,(dippap)UI2(THF)2,(dippap)U(CH2Ph)2(THF)2和Cp * 2U (dippap)。已合成和分离了双(氨基-酚盐)U(IV)物种,为(Rap)2U(THF)(R = tBu,DIPP)。随后与I2的反应产生了氧化加成产物(Risq)2UI2(THF),该化合物建立了[ap]配体骨架,可以支持铀上的两个电子过程。;该工作的最后重点是开发不对称配体骨架。一系列铀配合物。手性物质对于开发介导各种类型的不对称过程的催化剂很重要。合成并表征了一系列混合配体铀(III)配合物bis(Tp R)和TpR / Cp *,并探索了随后的烷基化化学反应。同样,产生了一系列混合的氧化还原活性和CpR辅助物质,以作为分离四价铀烷基络合物的平台。最后,报道了由三(恶唑啉)硼酸酯配体负载的铀(III)和(IV)配合物的合成。

著录项

  • 作者

    Matson, Ellen Marie.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Chemistry General.;Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 461 p.
  • 总页数 461
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号