首页> 外文学位 >Microphysics and Southern Ocean Cloud Feedback.
【24h】

Microphysics and Southern Ocean Cloud Feedback.

机译:微物理学和南方海洋云反馈。

获取原文
获取原文并翻译 | 示例

摘要

Global climate models (GCMs) change their cloud properties in the Southern Ocean (SO) with warming in a qualitatively consistent fashion. Cloud albedo increases in the mid-latitudes and cloud fraction decreases in the subtropics. This creates a distinctive 'dipole' structure in the SW cloud feedback. However, the shape of the dipole varies from model to model. In this thesis we discuss the microphysical mechanisms underlying the SW cloud feedback over the mid-latitude SO. We will focus on the negative lobe of the dipole. The negative SW cloud feedback in the mid-latitudes is created by transitions from ice to liquid in models. If ice transitions to liquid in mixed-phase clouds the cloud albedo increases because ice crystals are larger than liquid droplets and therefore more reflective for a constant mass of water. Decreases in precipitation efficiency further enhance this effect by decreasing sinks of cloud water. This transition is dependent on the mixed-phase cloud parameterization. Parameterizations vary wildly between models and GCMs disagree by up to 35 K on the temperature where ice and liquid are equally prevalent. This results in a wide spread in the model predictions of the increase in liquid water path (LWP, where the path is the vertically integrated mass of water) with warming that drives the negative optical depth cloud feedback. It is found that this disagreement also results in a wide array of climate mean-states as models that create liquid at lower temperatures have a higher mean-state LWP, lower ice water path (IWP), and higher condensed (ice and liquid) water path (CWP). This presents a problem in climate models. GCMs need to have a reasonable planetary albedo in their climate mean-state. We show evidence that GCMs have tuned cloud fraction to compensate for the variation in mid-latitude cloud albedo driven by the mixed-phase cloud parameterization. This tuning results in mid-latitude clouds that are both too few and too bright as well as a strong indirect control of global cloud fraction by the mixed-phase cloud parameterization. As discussed above, ice crystals are so much larger than liquid droplets that a transition from ice to liquid results in a robust increase in albedo, but this effect is modulated by variations in the size of cloud droplets. Cloud droplet size is determined by the prevalence and efficacy of cloud condensation nuclei (CCN). We present observational and modeling data showing that the sources of CCN in the SO are natural and that biogenic sources account for half of the cloud droplet number concentration in summer when biological productivity and sunlight are strongest. This makes it important to accurately represent biogenic CCN sources, especially their depletion as ocean acidification destroys the calcareous marine organisms that generate the majority of CCN. Despite confirming a natural and substantially biogenic source of CCN, both the source terms of CCN and interaction of CCN with liquid clouds are still uncertain. To help validate the cloud-aerosol indirect effect in GCMs we present a recent natural experiment that occurred when the Bartharbunga-Veithivotn fissure erupted suddenly releasing several times the total sulfur emission from Europe into the Atlantic. Substantial cloud aerosol indirect effects were observed during the eruption. This natural experiment offers a scenario that may be used in GCMs to validate their modeled cloud-aerosol indirect effect. Overall, accurate representations of liquid and mixed-phase cloud microphysics in the SO are required if we want to model the Earth's climate sensitivity. Further, efforts to tune around unreasonable portrayals of SO clouds result in long-ranging biases in global cloud properties and feedbacks.
机译:全球气候模式(GCM)以定性一致的方式随着变暖而改变了南大洋(SO)的云特性。中纬度地区的云反照率增加,而亚热带地区的云比例则减少。这在软件云反馈中创建了一个独特的“偶极子”结构。但是,偶极子的形状因模型而异。在本文中,我们讨论了中纬度SO上西南云反馈的微物理机制。我们将关注偶极子的负波瓣。中纬度的负SW云反馈是由模型中从冰到液体的转变造成的。如果冰在混合相云中转变为液体,则云的反照率会增加,因为冰晶大于液滴,因此对于恒定质量的水更具反射性。降水效率的降低通过减少云水汇进一步增强了这种效果。这种转变取决于混合相云参数化。模型之间的参数设置差异很大,在冰和液体同等普遍的温度下,GCM的差异高达35K。这导致模型预测中液体水路径(LWP,路径是水的垂直积分质量)随加热的增加而广泛传播,从而驱动了负光学深度云反馈。发现这种分歧也导致了各种各样的气候平均状态,因为在较低温度下产生液体的模型具有较高的平均状态LWP,较低的冰水路径(IWP)和较高的冷凝水(冰和液体)路径(CWP)。这在气候模型中提出了一个问题。 GCM需要在其气候平均状态下拥有一个合理的行星反照率。我们显示的证据表明,GCM已调整云分数以补偿由混合相云参数化驱动的中纬云反照率的变化。这种调整会导致中纬度云太少和太亮,以及通过混合相云参数化对全局云分数的强烈间接控制。如上所述,冰晶比液滴大得多,以至于从冰到液体的转变导致反照率的强劲增加,但是这种影响是通过云滴大小的变化来调节的。云滴大小取决于云凝结核(CCN)的流行程度和功效。我们提供的观测和建模数据表明,SO中CCN的来源是天然的,而在生物生产力和阳光最强的夏季,生物来源占云滴数浓度的一半。因此,重要的是准确地表示生物CCN来源,尤其是其消耗,因为海洋酸化会破坏产生大部分CCN的钙质海洋生物。尽管确认了CCN的自然来源,并且具有基本生物成因,但CCN的来源术语以及CCN与液云的相互作用仍然不确定。为了帮助验证GCM中的云气溶胶间接效应,我们提出了一项最近的自然实验,该实验发生在Bartharbunga-Veithivotn裂隙突然爆发时,其总硫排放量从欧洲释放了几倍,进入了大西洋。在喷发过程中观察到大量的云气溶胶间接作用。这项自然实验提供了可用于GCM中以验证其建模的云气溶胶间接效应的方案。总体而言,如果我们要对地球的气候敏感性进行建模,则需要SO中液相和混合相云微观物理学的准确表示。此外,努力调整SO云的不合理描述会导致全局云属性和反馈存在长期偏见。

著录项

  • 作者

    McCoy, Daniel T.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Atmospheric sciences.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号