首页> 外文学位 >Partial Differential Equation Models and Numerical Simulations of RNA Interactions and Gene Expression.
【24h】

Partial Differential Equation Models and Numerical Simulations of RNA Interactions and Gene Expression.

机译:RNA相互作用和基因表达的偏微分方程模型和数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Our genetic information is stored in the nucleus of our cells via a double helical chain of nucleotides called deoxyribonucleic acid (DNA). DNA is transcribed into a single chain of nucleotides called ribonucleic acid (RNA) which is then translated into proteins. New discoveries of other non-coding macromolecules and their functions along with a new understanding of post-transcriptional protein regulation have influenced the study of these processes. For example, small, non-coding RNAs (sRNA) such as microRNA (miRNA) or small interfering RNA (siRNA) regulate developmental events through certain interactions with messenger RNA (mRNA). By binding to specific sites on a strand of mRNA, sRNA may cause a gene to be activated or suppressed which may turn a gene “on” or “off” To understand these interactions, we developed a mathematical model which consists of N+1 coupled partial differential equations that describe mRNA and sRNA interactions across cells and tissue. These equations illustrate how one small, non-coding RNA segment and N target mRNA segments interact with each other depending on transcription rates, independent and dependent degradation rates, and the rate of intercellular mobility of each species. By varying diffusion coefficients (mobility of each species) and time dependence (creating a steady state), the system of N+1 coupled PDEs can be studied as three separate well-posed systems of equations: a single, nonlinear diffusion equation; coupled diffusion equations at steady state; and coupled diffusion equations with time dependence. This dissertation analyzes the mathematical models created and shows the implementation of consistent, efficient numerical methods such as modified finite difference methods and a form of alternating iteration to solve these equations. The numerical simulations show that when sRNA has mobility across tissue, the concentration profiles of mRNA display a sharp interface between tissue with high mRNA concentration and tissue with low mRNA concentration. If mRNA mobility across tissue is added, the concentration profile of mRNA is smoothed across the tissue. These simulations suggest that the mobilities of sRNA and mRNA contribute to the behavior of mRNA concentrations across tissue. In addition, this model may be utilized to illustrate similar types of interactions between multiple chemical species.
机译:我们的遗传信息通过称为脱氧核糖核酸(DNA)的核苷酸双螺旋链存储在我们的细胞核中。 DNA被转录成称为核糖核酸(RNA)的单核苷酸核苷酸,然后被翻译成蛋白质。其他非编码大分子及其功能的新发现,以及对转录后蛋白质调控的新理解,已经影响了这些过程的研究。例如,小的非编码RNA(sRNA),例如microRNA(miRNA)或小干扰RNA(siRNA)通过与信使RNA(mRNA)的某些相互作用来调节发育事件。通过与mRNA链上的特定位点结合,sRNA可能会导致基因被激活或抑制,从而可能使基因“开启”或“关闭”。为了解这些相互作用,我们开发了一个由N + 1偶联组成的数学模型偏微分方程,描述了细胞和组织之间的mRNA和sRNA相互作用。这些方程式说明了一个小的非编码RNA片段和N个靶mRNA片段如何相互作用,这取决于转录速率,独立和相关的降解速率以及每种物种的细胞间迁移率。通过改变扩散系数(每个物种的迁移率)和时间依赖性(建立稳态),可以将N + 1耦合PDE的系统研究为三个独立的适定方程组:单个非线性扩散方程;稳态下的耦合扩散方程;以及具有时间依赖性的耦合扩散方程。本文分析了所建立的数学模型,并说明了一致,有效的数值方法(如改进的有限差分法)的实现以及交替迭代求解这些方程的形式。数值模拟表明,当sRNA在组织中具有迁移性时,mRNA的浓度分布在mRNA浓度高的组织与mRNA浓度低的组织之间显示出尖锐的界面。如果增加了mRNA在组织中的迁移率,则mRNA在组织中的浓度分布将变得平滑。这些模拟表明,sRNA和mRNA的迁移性有助于整个组织中mRNA浓度的行为。此外,该模型可用于说明多种化学物质之间相似的相互作用类型。

著录项

  • 作者

    Hohn, Maryann Elisabeth.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 87 p.
  • 总页数 87
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号