首页> 外文学位 >Novel computational methods to understand neuronal networks and facilitate nucleic acid testing.
【24h】

Novel computational methods to understand neuronal networks and facilitate nucleic acid testing.

机译:理解神经元网络并促进核酸测试的新型计算方法。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is based on two distinct projects. One is focused on developing computational tools to facilitate assay design for nucleic acid testing methods. In the isothermal EXPonential Amplification Reaction (EXPAR), template sequences with similar thermodynamic characteristics perform very differently. To understand what causes this variability, we characterized the performance of 384 template sequences, and used this data to develop two computational methods to predict EXPAR template performance based on sequence: a position weight matrix approach with support vector machine classifier, and RELIEF attribute evaluation with Naive Bayes classification. The methods identified well and poorly performing EXPAR templates with 67-70% sensitivity and 77-80% specificity. Furthermore, our data suggest that variability in template performance is linked to specific sequence motifs. Cytidine, a pyrimidine base, is over-represented in certain positions of well-performing templates. Guanosine and adenosine, both purine bases, are over-represented in similar regions of poorly performing templates, frequently GA or AG dimers. Since polymerases have a higher affinity for purine oligonucleotides, polymerase binding to GA-rich regions of a single-stranded DNA template may promote non-specific amplification in EXPAR and other nucleic acid amplification reactions. We combined these methods into a computational tool that can accelerate new assay design by ruling out likely poor performers.;Another two computational tools are also developed to facilitate EXPAR and PROXimity Amplification Reaction (PROXAR) assay design. Another project is focused on network analysis. How does the brain, a complex network of interconnected neurons, give rise to biological function? To answer this question, we decomposed the C. elegans brain network into less complex sub-networks whose structures can give hints about the functional organization of the network as a whole. These sub-networks were introduced as "colored motifs". By coloring neurons in the network by their cell type, and analyzing the distribution and information content of these color motifs, we identified some common building blocks of the network and gained a better understanding of how the worm uses its neuronal network for signal transduction and how the neuronal network stores its information in the network structure.
机译:本文基于两个不同的项目。一个致力于开发用于促进核酸测试方法的分析设计的计算工具。在等温指数扩增反应(EXPAR)中,具有相似热力学特性的模板序列的表现非常不同。为了理解是什么导致了这种可变性,我们对384个模板序列的性能进行了表征,并使用此数据开发了两种计算方法来基于序列预测EXPAR模板的性能:具有支持向量机分类器的位置权重矩阵方法以及具有以下功能的RELIEF属性评估朴素贝叶斯分类。这些方法以67-70%的灵敏度和77-80%的特异性鉴定出性能良好且性能较差的EXPAR模板。此外,我们的数据表明模板性能的可变性与特定的序列基序相关。胞嘧啶碱基的胞嘧啶核苷在执行良好的模板的某些位置中过分表达。鸟嘌呤和腺苷都是嘌呤碱基,在性能较差的模板(通常为GA或AG二聚体)的相似区域中含量过高。由于聚合酶对嘌呤寡核苷酸具有更高的亲和力,因此聚合酶与单链DNA模板的GA富集区结合可能会促进EXPAR和其他核酸扩增反应中的非特异性扩增。我们将这些方法组合到一个计算工具中,可以通过排除可能表现不佳的工具来加速新的分析设计。另外,还开发了另外两个计算工具来促进EXPAR和PROXimity Amplification Reaction(PROXAR)分析设计。另一个项目专注于网络分析。大脑是相互连接的神经元的复杂网络,如何产生生物学功能?为了回答这个问题,我们将秀丽隐杆线虫脑网络分解为较不复杂的子网络,这些子网络的结构可以提示整个网络的功能组织。这些子网被称为“彩色图案”。通过按细胞类型对网络中的神经元进行着色,并分析这些颜色图案的分布和信息内容,我们确定了网络的一些常见构建基块,并更好地了解了蠕虫如何利用其神经元网络进行信号传导以及如何神经网络将其信息存储在网络结构中。

著录项

  • 作者

    Qian, Jifeng.;

  • 作者单位

    The Claremont Graduate University.;

  • 授予单位 The Claremont Graduate University.;
  • 学科 Engineering Mechanical.;Artificial Intelligence.;Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号