首页> 外文学位 >Electrophoretic motion of particles in microchannels.
【24h】

Electrophoretic motion of particles in microchannels.

机译:微粒在微通道中的电泳运动。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is focused on the boundary effects (including the size and shape of particles and channel, zeta potentials, applied electric potentials, transient effects and etc.) on the electrophoretic motion of particles in relatively small microchannels filled with electrolyte solutions. Thin electrical double layers are assumed. Theoretical models are developed to describe the steady state and transient electrokinetic particle-liquid flow in microchannels. To solve the theoretical models, three numerical simulation methods are developed and implemented in computer programs. After performing a series of numerical benchmark tests, computer programs are used to study the electrophoretic motion of particles in five different particle-channel systems.; Numerical results show that the electrophoretic velocity of a particle is proportional to its zeta potential. When a sphere or circular cylinder moves along the axis of a circular channel, its electrophoretic velocity decreases with the decrease of channel size. However, when a sphere moves eccentrically in a circular channel with a very small separation distance, its electrophoretic velocity increases with the decrease of channel size. The moving trajectory of a particle in a T-shaped microchannel can be controlled by adjusting the electrical potentials applied at three ends of the channel. The presence of one particle nearby the other one affects the motion of two particles, and this effect weakens with the increment of the separation distance. Numerical simulations show a scenario of a fast-moving particle climbing and surpassing a slow-moving particle.; To validate the numerical simulations, physical experiments are designed and conducted to measure the near-contact electrophoretic motion of spheres in circular capillaries. It is found that numerical results roughly agree with experimental ones.
机译:本文的重点是边界条件(包括粒子和通道的大小和形状,ζ电势,施加的电势,瞬态效应等)对填充有电解质溶液的相对较小的微通道中的粒子电泳运动的影响。假设薄双电层。建立了理论模型来描述微通道中的稳态和瞬态电动粒子-液体流动。为了解决理论模型,在计算机程序中开发并实现了三种数值模拟方法。在执行一系列数值基准测试后,使用计算机程序来研究五个不同粒子通道系统中粒子的电泳运动。数值结果表明,粒子的电泳速度与其ζ电势成正比。当球体或圆柱体沿着圆形通道的轴移动时,其电泳速度会随着通道尺寸的减小而降低。但是,当球体在具有很小分离距离的圆形通道中偏心移动时,其电泳速度会随着通道尺寸的减小而增加。 T形微通道中粒子的运动轨迹可以通过调节在通道三端施加的电势来控制。一个粒子在另一个粒子附近的存在会影响两个粒子的运动,并且这种影响会随着分离距离的增加而减弱。数值模拟显示了一个快速移动的粒子爬升并超过一个缓慢移动的粒子的场景。为了验证数值模拟,设计并进行了物理实验以测量圆形毛细管中球的近接触电泳运动。发现数值结果与实验结果基本一致。

著录项

  • 作者

    Ye, Chunzhen.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 178 p.
  • 总页数 178
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号