首页> 外文学位 >Chemical functionalization of carbon nanotubes for controlled optical, electrical and dispersion properties
【24h】

Chemical functionalization of carbon nanotubes for controlled optical, electrical and dispersion properties

机译:碳纳米管的化学功能化,可控制光学,电学和色散特性

获取原文
获取原文并翻译 | 示例

摘要

A carbon nanotube is a graphitic sheet, rolled into a one-dimensional, hollow tube. This structure provides certain individual nanotubes with high conductivity and near-infrared optical activity. These properties are not necessarily translated at the macroscale, however, due to strong van der Waals attractive forces that determine the behavior at the bulk level - exemplified by aggregation of nanotubes into bundles with significantly attenuated functionality. Different methods of carbon nanotube covalent functionalization are studied to improve dispersion while simultaneously maintaining intrinsic electrical and optical properties. In addition to retention of known behavior, new carbon nanotube photoluminescence pathways are also revealed as a result of this same covalent functionalization strategy. With various wet chemistries, including super-acid oxidation, the Billups-Birch reaction, and various diazonium based reactions, that utilize strong reducing or oxidizing conditions to spontaneously exfoliate aggregated carbon nanotubes, we are able to covalently functionalize individually dispersed nanotubes in a highly scalable manner. Covalent addition to the nanotube sidewalls converts the native sp2 hybridized carbon atoms to sp3 hybridization, which helps disrupt inter-tube van der Waals forces. However, this change in hybridization also perturbs the carbon nanotube electronic structure, resulting in an undesired loss of electrical conductivity and optical activity. We observe that controlling the location of functionalization, such as to the outer-walls of double-walled carbon nanotubes or as discrete functional "bands," we avert the loss of desirable properties by leaving significant tracts of sp2 carbon atoms unperturbed. We also demonstrate that such functional groups can act as electron and hole traps through the creation of a potential well deviation in the carbon nanotube electronic structure. This defect-activated carrier trapping primes the formation of charged excitons (trions) which are observed as redshifted photoluminescence in the near-infrared region. Implications and impacts of these covalent functionalization strategies will be discussed.
机译:碳纳米管是一种石墨薄片,卷成一维的空心管。这种结构为某些单独的纳米管提供了高电导率和近红外光学活性。但是,由于强大的范德华力决定了整体水平上的行为,因此这些特性不一定在宏观上得到转化-例如,纳米管聚集为功能明显减弱的束。研究了碳纳米管共价官能化的不同方法,以改善分散性,同时保持固有的电学和光学特性。除了保留已知行为外,由于相同的共价官能化策略,还揭示了新的碳纳米管光致发光途径。利用各种湿化学方法,包括超强酸氧化,Billups-Birch反应和各种重氮基反应,这些反应利用强的还原或氧化条件自发剥落聚集的碳纳米管,我们能够以高度可扩展性共价官能化单个分散的纳米管方式。共价添加到纳米管侧壁将天然的sp2杂化碳原子转换为sp3杂化,这有助于破坏管间范德华力。但是,这种杂交的变化也扰乱了碳纳米管的电子结构,导致了不希望的电导率和光学活性的损失。我们观察到,控制功能化的位置(如双层碳纳米管的外壁或作为离散的功能“带”),通过使大量sp2碳原子不受干扰,避免了所需特性的损失。我们还证明,通过在碳纳米管电子结构中形成潜在的阱偏差,这些官能团可以充当电子和空穴陷阱。这种缺陷激活的载流子俘获引发了带电激子(三子)的形成,在近红外区域中观察到该现象是红移的光致发光。将讨论这些共价功能化策略的含义和影响。

著录项

  • 作者

    Brozena, Alexandra H.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Chemistry.;Physical chemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号