首页> 外文学位 >Crystallographic texturing effects on shape recovery strain and mechanical properties of polycrystalline nitinol.
【24h】

Crystallographic texturing effects on shape recovery strain and mechanical properties of polycrystalline nitinol.

机译:结晶织构对多晶镍钛合金形状恢复应变和力学性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

As the shape memory material Nitinol (55% Nickel - 45% Titanium alloy) emerges to find new applications in engineered products, understanding the effects of material processing becomes increasingly important. Nitinol's unique mechanical behavior is derived from the coordinated atomic movements manifesting in phase transformations from cubic austenite to monoclinic martensite. These phase transformations are solid-to-solid phase transformations that occur without diffusion or plasticity, making them reversible. They involve changes in the crystalline structure that can be induced by changes in either temperature or stress. In addition to phase transformations, Nitinol mechanical strength is strongly dependent on the alloy composition and the method in which the material is processed, i.e. rolled, drawn, extruded, or forged. The mechanical work, combined with their intermediate heat treatment steps, contribute to modify microstructure, transformation temperatures and mechanical properties. These manufacturing processing steps lead to texturing (crystallographic alignment) of the material.Nitinol's anisotropy results mainly from crystallographic texture due to the rotation of grains into preferred orientations. For single crystals, the recoverable transformations are strongly dependent on the orientation of the crystals. For the polycrystalline NiTi, a macroscopic anisotropy may results from the microscopic crystal anisotropies. This research found that the textured, polycrystalline NiTi material display the notable transformation strain anisotropy, with larger transformation strains in different textured directions. When compared to tensile stress-strain curves, the compressive stress-strain curves demonstrate smaller recoverable strain levels, steeper transformation stress-strain slopes and higher critical transformation stress levels. From our experiments it was gleaned that 5% compression material setting, results in the maximum expected shape recovery strain. In addition, the critical stress for stress-induced martensitic transformation was higher in compression than in tension. The recovery strain associated with the transformation, had an average value of 5.5 +/-0.25% in tension and 3.5 +/-0.25% in compression, giving a strain ratio of 1:57. Until now, there has been a dearth of information in the literature regarding the compressive deformation of polycrystalline NiTi and its martensite-austenite phase transformation strain and strength levels. The potential for strain recovery capabilities of compressed solid Nitinol products can enable the design of novel devices in a myriad of industries.
机译:随着形状记忆材料镍钛诺(55%镍-45%钛合金)的出现在工程产品中找到新的应用,了解材料加工的效果变得越来越重要。镍钛诺的独特机械性能源自于从立方奥氏体到单斜马氏体的相变中表现出的协调原子运动。这些相变是固-固相变,发生时没有扩散或可塑性,使它们可逆。它们涉及晶体结构的变化,该变化可以由温度或应力的变化引起。除相变外,镍钛诺的机械强度在很大程度上取决于合金成分和材料的加工方法,即轧制,拉延,挤压或锻造。机械功及其中间的热处理步骤有助于改变微观结构,转变温度和机械性能。这些制造工艺步骤导致材料的纹理化(晶体学取向)。镍钛诺的各向异性主要是由于晶粒旋转到优选方向而导致的晶体学织构造成的。对于单晶,可恢复的转变在很大程度上取决于晶体的取向。对于多晶NiTi,宏观各向异性可以由微观晶体各向异性引起。这项研究发现,织构化的多晶NiTi材料显示出显着的转变应变各向异性,在不同织构方向上具有较大的转变应变。与拉伸应力-应变曲线相比,压应力-应变曲线显示出较小的可恢复应变水平,陡峭的相变应力-应变斜率和较高的临界相变应力水平。从我们的实验中可以发现,5%的压缩材料凝固会导致最大的预期形状恢复应变。另外,应力引起的马氏体相变的临界应力在压缩中比在拉伸中更高。与转变有关的恢复应变的平均值为拉伸力5.5 +/- 0.25%和压缩力3.5 +/- 0.25%,应变比为1:57。到目前为止,关于多晶NiTi的压缩变形及其马氏体-奥氏体相变应变和强度水平的文献资料匮乏。压缩的固态镍钛诺产品具有应变恢复能力的潜力,可以在众多行业中设计出新颖的设备。

著录项

  • 作者

    Fonte, Matthew.;

  • 作者单位

    Tufts University.;

  • 授予单位 Tufts University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号