首页> 外文学位 >Energetics, pathways and dynamics in Src tyrosine kinase protein conformational changes.
【24h】

Energetics, pathways and dynamics in Src tyrosine kinase protein conformational changes.

机译:Src酪氨酸激酶蛋白构象变化的能量学,途径和动力学。

获取原文
获取原文并翻译 | 示例

摘要

Advanced computational methods are applied to study the energetics, atomistic pathways and dynamics in the conformational activation of Src tyrosine kinase, an enzyme playing important roles in cellular signaling and implicated in several types of human cancer.;First, we begin by exploring the ligand binding specificity of Src Homology 2 (SH2) domains, one major regulatory domain of Src kinase activity. By applying a potential of mean force free energy simulations method with restraining potentials, we calculate the absolute binding affinities between five representative SH2 domains and five peptides. For three of the five SH2 domains, our computational results rank the native peptides as the most preferred binding motif. For the remaining two SH2 domains, high affinity binding motifs other than the native peptides are identified. This study illustrate that computational methods provide a powerful complement to experiments in trying to elucidate complex protein-protein interactions.;We then proceed to investigate a large-scale conformational change associated with the activation of c-Src tyrosine kinase: the opening of the activation loop and rotation of alpha-C helix near the catalytic site. The inactive-to-active conformational transition of the catalytic domain of human c-Src tyrosine kinase is characterized using the string method with swarms-of-trajectories with all-atom explicit solvent molecular dynamics simulations. This large conformational change is found to occur in two main steps in which the activation loop opens first, followed by the rotation of the alpha-C helix. The computed potential of mean force free energy profile along the activation pathway displays a local minimum, which allows the identification of an intermediate state. These results show that the string method with swarms-of-trajectories is an effective technique to characterize complex and slow conformational transitions in large biomolecular systems.;Next, the theoretical framework combining the string method with the Markovian milestoning method is applied to the flipping of the highly conserved and catalytically important DFG motif located in the activation loop. We obtain a reasonable atomistic pathway for Src tyrosine kinase DFG-flip which exhibits very similar features seen in the free MD simulations of the DFG-flip of related Abl kinase. Free energy profiles along pathway computed by mean force calculation and by Markovian milestoning consistently show a stepwise motion for the seemingly simple DFG-flip. We find that DFG flipping is coordinated with the rotation of the alpha-C helix, suggesting the three separate motions, namely the opening of the activation loop, the rotation of the alpha-C helix, and the flipping of DFG motif, may all be dynamically coupled. A comparison of the free energy profile with Asp404 protonated and deprotonated shows that protonation plays a role in facilitating the DFG-flip by stabilizing the DFG-out conformation.;Finally, we present our attempt to find the most probable folding path of the 35-residue villin headpiece subdomain (HP35). The converged pathway, represented by 61 discrete images, fully characterizes the mechanism of HP35 folding. The three helices in HP35 exhibit distinct patterns of formation, and each is formed at a different stage in the whole folding process. The free energy along the folding pathway is computed and roughly two major energy barriers are observed which divide the folding into three states. The biggest folding energy barrier is estimated to be 4.1 kcal/mol and the rate-limiting step of folding appears to be the formation of an aromatic core. This three-state folding mechanism is consistent with previous experimental and computational studies. Markov states model (MSM) along pathway is then built to estimate the folding transition path time and good Markovian behavior is observed in present model.;Taken together, studies presented in the thesis highlight the importance of using computer models and molecular simulations to understand the interplay between the structures, pathways, energetics and dynamics in complex biomolecular systems.
机译:先进的计算方法被用于研究Src酪氨酸激酶的构象活化的能量学,原子途径和动力学,Src酪氨酸激酶在细胞信号传导中起重要作用,并与多种人类癌症有牵连。首先,我们从探索配体结合开始Src同源2(SH2)域的特异性,Src激酶活性的一个主要调节域。通过应用具有限制电位的平均无力能量模拟方法的电位,我们计算了五个代表性SH2结构域和五个肽之间的绝对结合亲和力。对于五个SH2域中的三个,我们的计算结果将天然肽列为最优选的结合基序。对于剩余的两个SH2结构域,鉴定了天然肽以外的高亲和力结合基序。这项研究表明,计算方法为尝试阐明复杂的蛋白质-蛋白质相互作用提供了有力的补充。;然后我们继续研究与c-Src酪氨酸激酶激活相关的大规模构象变化:激活的开启催化位点附近的α-C螺旋环和旋转。人c-Src酪氨酸激酶催化结构域的非活性构象转变是通过弦法和具有全部原子显式溶剂分子动力学模拟的运动轨迹来表征的。发现这种大的构象变化发生在两个主要步骤中,在该步骤中,首先打开了激活环,然后旋转了α-C螺旋。沿激活路径计算出的平均无力能量分布潜力显示出局部最小值,从而可以识别中间状态。这些结果表明,具有轨迹轨迹的弦方法是表征大型生物分子系统中复杂而缓慢的构象转变的有效技术。;接下来,将弦方法与马尔可夫里程碑方法相结合的理论框架被应用于翻转位于激活环中的高度保守且具有催化作用的DFG基序。我们获得了Src酪氨酸激酶DFG-flip的合理原子途径,该途径具有与相关Abl激酶的DFG-flip的免费MD模拟中非常相似的功能。通过平均力计算和马尔可夫里程碑计算的沿路径的自由能剖面始终显示出看似简单的DFG翻转的步进运动。我们发现DFG翻转与alpha-C螺旋的旋转相协调,表明三个单独的运动,即激活环的打开,alpha-C螺旋的旋转和DFG基序的翻转,可能都是动态耦合。质子化和去质子化的Asp404的自由能图的比较表明,质子化通过稳定DFG-out构象在促进DFG翻转中起作用。最后,我们提出了寻找35-最可能折叠路径的尝试。残留villin机头子域(HP35)。由61张离散图像表示的会聚路径充分表征了HP35折叠的机制。 HP35中的三个螺旋显示出不同的形成方式,并且每个折叠在整个折叠过程中处于不同的阶段。计算沿折叠路径的自由能,并观察到大约两个主要的能垒,它们将折叠分为三个状态。最大的折叠能垒估计为4.1 kcal / mol,折叠的限速步骤似乎是形成芳香核。这种三态折叠机制与先前的实验和计算研究一致。然后建立沿路径的马尔可夫状态模型(MSM)来估计折叠过渡路径的时间,并在本模型中观察到良好的马尔可夫行为。综上所述,本文提出的研究强调了使用计算机模型和分子模拟来理解分子折叠的重要性。复杂生物分子系统中结构,途径,能量和动力学之间的相互作用。

著录项

  • 作者

    Gan, Wenxun.;

  • 作者单位

    The University of Chicago.;

  • 授予单位 The University of Chicago.;
  • 学科 Chemistry Biochemistry.;Chemistry Physical.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 宗教;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号