首页> 外文学位 >Stability of high temperature ceramics under corrosive environments.
【24h】

Stability of high temperature ceramics under corrosive environments.

机译:高温陶瓷在腐蚀性环境下的稳定性。

获取原文
获取原文并翻译 | 示例

摘要

Currently, ceramics are being used under increasingly demanding environments. This research involves the study of high-temperature stability of ceramic materials in two diverse applications.;The first application involves the use of ceramic materials in gas turbines. SiC/SiC ceramic matrix composites (CMCs) are increasingly being used in the hot-sections of gas turbines; and they are subject to recession of their surface if exposed to a flow of high-velocity water vapor, and to hot-corrosion when exposed to alkali salts. This research involves developing a hybrid system containing an environmental barrier coating (EBC) for protection of the CMC from chemical attack and a thermal barrier coating (TBC) that allows a steep temperature gradient across it to lower the temperature of the CMC for increased lifetimes. The EBC coating is a functionally graded mullite (3Al2O 3·2SiO2) deposited by chemical vapor deposition (CVD), the TBC layer is yttria-stabilized zirconia (YSZ) deposited by air plasma spray (APS). The hybrid coating system demonstrated excellent physical and chemical stability under severe thermal shock and exposure to an aggressive hot-corrosion environment. Finite element modeling showed that through-thickness cracks reduce the tensile stresses in the TBC, but also reduce the beneficial compressive stresses in the EBC, and may actually lead to the propagation of the vertical cracks into the EBC.;The second application involves the formation of solar-grade silicon by an inexpensive and environmentally friendly electrochemical process using an YSZ solid oxide membrane (SOM) at elevated temperature (~1100 °C). The SOM membrane is exposed to a complex fluoride flux with dissolved silica, which is then electrochemically separated into silicon and oxygen. Membrane stability is crucial to ensure high efficiency and long-term performance of the SOM process. A failure model of the SOM membrane by the formation of "inner cracks" was studied, and attributed to yttrium depletion in the YSZ, which leads to phase transformation from the cubic to tetragonal phase. A series of systematic experiments were designed and performed to understand the synergistic roles of silica and YF3 in the flux in membrane degradation. It was shown that silica attacks the SOM membrane, while YF 3 in the flux slows down the attack. The mechanism of the yttria depleted layer (YDL) formation was attributed to grain boundary attack by the silica in the flux, which was the rate-controlling step. This led to rapid ingress of the flux into this attacked grain boundaries, and the out diffusion of Y from the cubic YSZ grains to the grain boundary. This depletion of the Y from the cubic grains transformed them into tetragonal. Once all of the cubic grains in the YDL region converted to tetragonal YSZ grains, no further diffusion occurred. Based on the stability test results, a new flux design was proposed and tested. The flux composition did not attack the SOM membrane, and successful separation of silica in the flux to phase pure Si crystals was demonstrated without apparent damage to the SOM membrane, thereby demonstrating the viability of the Si-SOM process.
机译:当前,在越来越苛刻的环境下使用陶瓷。该研究涉及在两种不同应用中对陶瓷材料的高温稳定性的研究。第一个应用涉及在燃气轮机中使用陶瓷材料。 SiC / SiC陶瓷基复合材料(CMC)越来越多地用于燃气轮机的高温区域。如果暴露于高速水蒸气流中,它们的表面就会凹进;暴露于碱金属盐中时,它们会遭受热腐蚀。这项研究涉及开发一种混合动力系统,该系统包含一个用于保护CMC免受化学侵蚀的环境屏障涂层(EBC)和一个热屏障涂层(TBC),该涂层可在其整个表面上形成陡峭的温度梯度,从而降低CMC的温度以延长使用寿命。 EBC涂层是通过化学气相沉积(CVD)沉积的功能梯度莫来石(3Al2O 3·2SiO2),TBC层是通过空气等离子喷涂(APS)沉积的氧化钇稳定的氧化锆(YSZ)。混合涂层系统在剧烈的热冲击下以及在侵蚀性的热腐蚀环境中表现出出色的物理和化学稳定性。有限元建模表明,全厚度裂纹降低了TBC中的拉应力,但也降低了EBC中的有益压应力,并可能导致垂直裂纹扩展到EBC中。在高温(〜1100°C)下使用YSZ固体氧化物膜(SOM)通过廉价且环保的电化学方法制备太阳能级硅。 SOM膜暴露于具有溶解的二氧化硅的复杂氟化物通量中,然后电化学分离成硅和氧。膜稳定性对于确保SOM工艺的高效率和长期性能至关重要。研究了由于形成“内部裂纹”而导致的SOM膜失效模型,归因于YSZ中钇的耗尽,从而导致了从立方相到四方相的相变。设计并进行了一系列系统的实验,以了解二氧化硅和YF3在膜降解通量中的协同作用。结果表明,二氧化硅侵蚀了SOM膜,而助熔剂中的YF 3减慢了侵蚀。氧化钇耗尽层(YDL)形成的机理归因于助熔剂中二氧化硅的晶界侵蚀,这是速率控制步骤。这导致焊剂迅速进入该侵蚀的晶界,并使Y从立方YSZ晶粒向外扩散到晶界。立方晶粒中的Y耗尽将其转变为四方晶。一旦YDL区域中的所有立方晶粒均转换为四方YSZ晶粒,便不再发生扩散。根据稳定性测试结果,提出并测试了一种新的磁通设计。助熔剂组成没有侵蚀SOM膜,并且证明了助熔剂中的二氧化硅成功分离成相纯的Si晶体,而对SOM膜没有明显损害,从而证明了Si-SOM工艺的可行性。

著录项

  • 作者

    Xu, Jiapeng.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号