首页> 外文学位 >Study of redox reactions to split water and carbon dioxide.
【24h】

Study of redox reactions to split water and carbon dioxide.

机译:研究氧化还原反应分解水和二氧化碳。

获取原文
获取原文并翻译 | 示例

摘要

The development of carbon-neutral, environmentally-sustainable energy carrier is a technological imperative necessary to mitigate the impact of anthropogenic carbon dioxide on earth's climate. One compelling approach rapidly gaining international attention is the conversion of solar energy into renewable fuels, such as H2 or CO, via a two-step thermochemical cycle driven by concentrated solar power. In accordance with the increased interest in this process, there is a need to better understand the gas splitting chemistry on the metal oxide intermediates encountered in such solar-driven processes. Here we measured the H2 and CO production rates during oxidation by H2O and CO2 in a stagnation flow reactor. Redox cycles were performed over various metal oxide chemistries such as hercynite and ceria based materials that are thermally reduced by laser irradiation. In addition to cycle capacity evaluation, reaction kinetics intrinsic to the materials were extracted using a model-based analytical approach to account for the effects of mixing and dispersion in the reactor.;Investigation of the "hercynite chemistry" with raman spectroscopy verifies that, at the surface, the cycle proceeds by stabilizing the reduced and oxidized moieties in two different compounds, which allows the thermal reduction reaction to occur to a greater extent at a temperature 150 °C lower than a similarly prepared CoFe2O4-coated m-ZrO2.;Investigation of the ceria cycle shows that the water splitting reaction, in the range of 750 - 950 °C and 20 - 40 vol.% H2O, can best be described by a first-order kinetic model with low apparent activation energy (29 kJ/mol). The carbon dioxide splitting reaction, in the range of 650 - 875 °C and 10 - 40 vol.% CO2, is a more complex surface-mediated phenomena that is controlled by a temperature-dependent surface site blocking mechanism involving adsorbed carbon. Moreover, we find that lattice substitution of ceria with zirconium can increase H2 production by approximately 11 %, and that the kinetics of water splitting on doped ceria is still best described by a deceleratory power law model (F-model), similar to undoped CeO2. Our results fill a critical gap in the knowledge base required to develop high-fidelity computational models for the design of concentrated solar receiver/reactors.
机译:碳中和,环境可持续的能源载体的发展是减轻人为二氧化碳对地球气候影响的必要技术。一种迅速引起国际关注的引人注目的方法是,通过由集中太阳能驱动的两步热化学循环,将太阳能转化为可再生燃料,例如H2或CO。根据对该方法的日益增长的兴趣,需要更好地理解在这种太阳能驱动的方法中遇到的金属氧化物中间体上的气体分裂化学。在这里,我们测量了滞流反应器中H2O和CO2氧化过程中H2和CO的生产率。氧化还原循环是在各种金属氧化物化学物质上进行的,例如通过激光照射而热还原的水英石和二氧化铈基材料。除循环容量评估外,还使用基于模型的分析方法提取了材料固有的反应动力学,以说明反应器中混合和分散的影响。;拉曼光谱法对“海藻石化学”的研究证实了,在表面上,通过稳定两种不同化合物中的还原和氧化部分来进行循环,这使得热还原反应在比类似制备的CoFe2O4包覆的m-ZrO2低150°C的温度下发生的程度更大。的二氧化铈循环表明,在750-950°C和20-40 vol。%H2O范围内的水分解反应可以用表观活化能低(29 kJ / mol)的一级动力学模型来最好地描述。 )。二氧化碳分解反应的温度范围为650-875°C,二氧化碳含量为10-40 vol。%,是一种更复杂的表面介导现象,受涉及吸附碳的依赖温度的表面位阻机制控制。此外,我们发现用锆对铈土的晶格取代可以使H2的产量增加约11%,并且与未掺杂的CeO2相似,减速力定律模型(F-model)仍能最好地描述掺杂二氧化铈上水分解的动力学。 。我们的结果填补了开发集中式太阳能接收器/反应器设计的高保真计算模型所需的知识库中的关键空白。

著录项

  • 作者

    Arifin, Darwin.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Chemical.;Energy.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号