首页> 外文学位 >A multiscale investigation of protein affinity and displacer efficacy in chromatographic systems using quantitative structure-property relationship modeling.
【24h】

A multiscale investigation of protein affinity and displacer efficacy in chromatographic systems using quantitative structure-property relationship modeling.

机译:使用定量结构-性质关系模型对色谱系统中蛋白质亲和力和置换剂功效进行多尺度研究。

获取原文
获取原文并翻译 | 示例

摘要

Methods development for a given protein separation often entails the initial screening of various classes of stationary phase materials and mobile phase conditions in order to identify chromatographic conditions with sufficient selectivity. In this thesis, high throughput experimentation is employed in concert with state-of-the-art structure-property modeling approaches to address several challenges in bioseparations methods development.; High throughput screening (HTS) can enable the rapid identification of displacers for the purification of protein mixtures by displacement chromatography. In the present work, HTS is employed to screen: (1) displacer libraries to identify selective and high-affinity displacers for protein mixtures in ion-exchange systems, and (2) a library of novel aminoglycoside polyamines for their ability to bind to DNA for nucleic acid purification applications. In addition, a novel multi-dimensional high-throughput screening (MD-HTS) approach is developed for examining the influence of various operating parameters on displacer selectivity and for the identification of potential displacers and conditions for ion-exchange displacement separations of biological mixtures. The HTS data are also used to generate quantitative structure-property relationship (QSPR) models to predict displacer efficacy or DNA-binding affinity of untested molecules. Finally, model interpretation is employed to understand the physicochemical basis of displacer selectivity and to identify the characteristics of efficacious DNA-compaction agents.; Structure-property modeling is also employed for the a priori prediction of protein retention in ion-exchange and hydrophobic interaction chromatography (HIC). These models are used to gain insight into the influence of the mobile phase salt counterion on the binding affinity of proteins in cation exchange chromatography and the role of the stationary phase resin in influencing protein retention in HIC. In addition, a novel "multiscale" modeling strategy is developed, which combines the generation of predictive QSPR models for isotherm parameters with traditional chromatographic transport models to predict ion-exchange column performance directly from protein structure data. The synergistic use of these molecular and macroscopic modeling techniques provides a unique opportunity to develop powerful predictive tools and methods for gaining insight into the fundamental physics of the protein adsorption process in different chromatographic modes.
机译:对于给定的蛋白质分离方法的开发通常需要对各种类型的固定相材料和流动相条件进行初步筛选,以便以足够的选择性鉴定色谱条件。在这篇论文中,高通量实验与最先进的结构特性建模方法结合使用,以解决生物分离方法开发中的一些挑战。高通量筛选(HTS)可以通过置换色谱法快速鉴定置换蛋白,以纯化蛋白质混合物。在本工作中,HTS用于筛选:(1)置换蛋白文库,以鉴定离子交换系统中蛋白质混合物的选择性和高亲和置换蛋白,以及(2)新型氨基糖苷多胺与DNA结合的能力的文库。用于核酸纯化应用。此外,还开发了一种新颖的多维高通量筛选(MD-HTS)方法,用于检查各种操作参数对浮选剂选择性的影响,并确定潜在的浮选剂和生物混合物离子交换置换分离的条件。 HTS数据还用于生成定量的结构-属性关系(QSPR)模型,以预测置换剂功效或未经测试的分子与DNA的结合亲和力。最后,采用模型解释来了解置换剂选择性的物理化学基础,并鉴定有效的DNA压缩剂的特征。结构属性建模还用于在离子交换和疏水相互作用色谱(HIC)中对蛋白质保留进行先验预测。这些模型用于深入了解流动相盐反离子对阳离子交换层析中蛋白质结合亲和力的影响以及固定相树脂在影响HIC中蛋白质保留方面的作用。此外,开发了一种新颖的“多尺度”建模策略,该策略将等温线参数的预测QSPR模型的生成与传统色谱传输模型相结合,以直接从蛋白质结构数据预测离子交换柱的性能。这些分子和宏观建模技术的协同使用为开发强大的预测工具和方法提供了独特的机会,从而可以洞察不同色谱模式下蛋白质吸附过程的基本物理原理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号