首页> 外文学位 >Catalytic Activity of Microbially Formed Palladium Nanoparticles
【24h】

Catalytic Activity of Microbially Formed Palladium Nanoparticles

机译:微生物形成的钯纳米粒子的催化活性

获取原文
获取原文并翻译 | 示例

摘要

The applications of palladium are wide and varied, but characteristics such as its catalytic nature allow it to be widely used in chemical and electrochemical industries. However, with the cost of palladium on the rise, alternative methods have been investigated to accommodate demands. Due to the enhanced catalytic nature of nanoparticles, palladium nanoparticles have been investigated as a viable cost reduction strategy to incorporate into catalytic systems.;Common techniques for the formation of nanoparticles involve either physical or chemical methods. However, more economical and non-toxic alternatives exist in the form of biological methods. In this study, microbially-formed palladium nanoparticles were synthesized using a solution of sodium tetrachloropalladate and the metal reducing properties of Clostridium pasteurianum BC1. These palladium nanoparticles were then purified through a simple centrifugation process and characterized for their morphology, chemical, and electrocatalytic characteristics. Heat treatments and immobilized microbial cultures were also utilized to improve the catalytic performance. Morphology, size, and composition of palladium nanoparticle samples were determined using scanning electron microscopy, transmission electron microscopy, dynamic light scattering analysis, energy dispersive X-ray spectroscopy, and X-ray diffraction. Electrochemical behavior was investigated via cyclic voltammetry using a traditional three electrode set-up consisting of a modified glassy carbon working electrode, a platinum wire counter electrode, and a Ag | AgCl reference electrode in a potassium hydroxide solution.;Scanning electron microscopy and transmission electron microscopy revealed consistent spherical morphology throughout all samples. Dynamic light scattering analysis revealed the average size of palladium nanoparticles formed using suspended cultures to be approximately 20 nm. The average size of palladium nanoparticles formed using immobilized cultures was found to be 15 nm. Energy dispersive X-ray spectroscopy and X-ray diffraction showed the nanoparticles in the non-heat treated samples consist only of palladium, while palladium and palladium oxides were present in heat treated samples. Finally, cyclic voltammetry revealed that palladium nanoparticles formed using suspended microbial cultures performed poorly with respect to abiotic controls, in terms of mass activity with average mass activities of 7 mAmg-1 and 93 mAmg -1, respectively. An increase in palladium nanoparticle catalytic performance was observed after utilizing immobilized microbial cultures to synthesize the nanoparticles via sodium alginate gel entrapment. The average mass activities of nanoparticles formed using suspended cultures and immobilized cultures was measured to be 7 mAmg-1 and 130 mAmg-1, respectively. Further improvements in catalyst performance were explored using heat treatment methods by heating palladium nanoparticle samples at 400 °C. Comparatively, it was found that the electrochemical activity observed in heat treated palladium nanoparticles formed using immobilized microbial cultures greatly exceeded that of heat treated palladium nanoparticles formed in suspended microbial cultures with average mass activities of 177 mAmg-1 and 43 mAmg-1, respectively.;To our knowledge, this is the first study that evaluates the electrochemical catalytic activity of microbially-formed palladium nanoparticles. The results of this study aim to support the use of nanoparticles formed using facile and environmentally-friendly microbial synthesis methods as a suitable alternative as opposed to standard physical and chemical synthesis methods.
机译:钯的用途广泛而多样,但是其催化性质等特性使其可以广泛用于化学和电化学工业。但是,随着钯金价格的上涨,已经研究了替代方法以适应需求。由于纳米颗粒具有增强的催化特性,因此已经研究了将钯纳米颗粒用作降低催化体系成本的可行策略。纳米颗粒形成的常用技术涉及物理或化学方法。然而,以生物方法的形式存在更经济和无毒的替代品。在这项研究中,使用四氯钯酸钠溶液和巴氏梭菌BC1的金属还原性能合成了微生物形成的钯纳米颗粒。然后通过简单的离心过程纯化这些钯纳米颗粒,并对其形态,化学和电催化特性进行表征。热处理和固定化的微生物培养物也被用来提高催化性能。使用扫描电子显微镜,透射电子显微镜,动态光散射分析,能量色散X射线光谱和X射线衍射确定钯纳米颗粒样品的形态,尺寸和组成。电化学行为是通过循环伏安法使用传统的三电极装置进行研究的,该装置由修饰的玻碳工作电极,铂丝反电极和Ag |电极组成。 AgCl参比电极在氢氧化钾溶液中;扫描电子显微镜和透射电子显微镜在所有样品中均显示出一致的球形形态。动态光散射分析显示,使用悬浮培养物形成的钯纳米颗粒的平均大小约为20 nm。发现使用固定培养物形成的钯纳米颗粒的平均尺寸为15 nm。能量色散X射线光谱和X射线衍射表明,未热处理样品中的纳米颗粒仅由钯组成,而热处理样品中存在钯和氧化钯。最后,循环伏安法显示,使用悬浮微生物培养物形成的钯纳米粒子相对于非生物对照而言,其质量活性分别为7 mAmg-1和93 mAmg -1,表现较差。在利用固定的微生物培养物通过藻酸钠凝胶截留合成纳米颗粒后,观察到钯纳米颗粒催化性能的提高。使用悬浮培养物和固定培养物形成的纳米颗粒的平均质量活性分别测量为7 mAmg-1和130 mAmg-1。使用热处理方法,通过在400°C下加热钯纳米颗粒样品,探索了催化剂性能的进一步提高。相比之下,发现在使用固定化微生物培养物形成的热处理钯纳米颗粒中观察到的电化学活性大大超过了在悬浮微生物培养物中形成的热处理钯纳米颗粒的电化学活性,其平均质量活度分别为177 mAmg-1和43 mAmg-1。 ;据我们所知,这是第一个评估微生物形成的钯纳米粒子的电化学催化活性的研究。这项研究的结果旨在支持使用通过简便且环保的微生物合成方法形成的纳米颗粒作为与标准物理和化学合成方法相反的合适替代方法。

著录项

  • 作者

    Yang, Sarah Ann.;

  • 作者单位

    University of Nevada, Reno.;

  • 授予单位 University of Nevada, Reno.;
  • 学科 Materials science.;Nanotechnology.
  • 学位 M.S.
  • 年度 2018
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号