首页> 外文学位 >Exploiting Collective Effects to Direct Light Absorption in Natural and Artificial Light-Harvesters.
【24h】

Exploiting Collective Effects to Direct Light Absorption in Natural and Artificial Light-Harvesters.

机译:利用集体效应来直接吸收天然和人造光收集器中的光。

获取原文
获取原文并翻译 | 示例

摘要

Photosynthesis---the conversion of sunlight to chemical energy---is fundamental for supporting life on our planet. Despite its importance, the physical principles that underpin the primary steps of photosynthesis, from photon absorption to electronic charge separation, remain to be understood in full. Electronic coherence within tightly-packed light-harvesting (LH) units or within individual reaction centers (RCs) has been recognized as an important ingredient for a complete understanding of the excitation energy transfer (EET) dynamics. However, the electronic coherence across units---RC and LH or LH and LH---has been consistently neglected as it does not play a significant role during these relatively slow transfer processes. Here, we turn our attention to the absorption process, which, as we will show, has a much shorter built-in timescale. We demonstrate that the---often overlooked---spatially extended but short-lived excitonic delocalization plays a relevant role in general photosynthetic systems. Most strikingly, we find that absorption intensity is, quite generally, redistributed from LH units to the RC, increasing the number of excitations which can effect charge separation without further transfer steps. A biomemetic nano-system is proposed which is predicted to funnel excitation to the RC-analogue, and hence is the first step towards exploiting these new design principles for efficient artificial light-harvesting.
机译:光合作用-将太阳光转化为化学能-是维持地球生命的基础。尽管它很重要,但从光子吸收到电子电荷分离的光合作用的基本步骤所依据的物理原理仍有待充分理解。紧密包装的光收集(LH)单元内或单个反应中心(RCs)内的电子相干性已被认为是完全了解激发能转移(EET)动力学的重要成分。但是,由于在相对较慢的传输过程中它不发挥重要作用,因此始终忽略了跨单元RC和LH或LH和LH的电子相干性。在这里,我们将注意力转向吸收过程,正如我们将要展示的那样,它的内置时间尺度要短得多。我们证明了-通常被忽略的-空间扩展但寿命短的激子离域作用在一般的光合作用系统中起着相关的作用。最引人注目的是,我们发现吸收强度通常从LH单元重新分配到RC,从而增加了无需进一步转移步骤即可实现电荷分离的激发次数。提出了一种拟生物纳米系统,该系统有望激发到RC模拟物的激发,因此是利用这些新的设计原理进行有效的人工采光的第一步。

著录项

  • 作者

    Schroeder, Christopher.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Physics.;Biophysics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号