首页> 外文学位 >The effect of hydrocarbon structure on nickel catalyst deactivation in stream reforming of hexane and benzene.
【24h】

The effect of hydrocarbon structure on nickel catalyst deactivation in stream reforming of hexane and benzene.

机译:己烷和苯物流重整中烃结构对镍催化剂失活的影响。

获取原文
获取原文并翻译 | 示例

摘要

Steam reforming of hexane and benzene for hydrogen production has been carried out on Ni and Rh catalysts at 800 oC with and without sulfur to understand the deactivation mechanisms in steam reforming reactions and how hydrocarbon structure affects the processes. Three catalysts were synthesized using incipient wetness impregnation method: 2% and 10%Ni catalysts supported on 20%CeO 2-modified Al2O3 (denoted as "2Ni/CeAl" and "10Ni/CeAl", respectively), and 2%Rh catalyst supported on the same support (denoted as "2Rh/CeAl"). The 10Ni/CeAl catalyst is the focus of the study, and the 2Ni/CeAl and 2Rh/CeAl catalysts were used as control samples. It is found that catalyst deactivates much faster in hexane reforming than in benzene reforming on 10Ni/CeAl with the presence of sulfur poison. Temperature programmed oxidation (TPO) and X-ray absorption near edge structure (XANES) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD) are used together to understand the catalyst deactivation mechanisms and the effects of hydrocarbon structure on catalyst deactivation.;Sulfur K-edge XANES measured and estimated the sulfur species formed on the catalyst after steam reforming reaction. The sulfur species formed on the catalyst are the same for benzene and hexane reforming, i.e., Ni sulfide and sulfate, which do not correlate with catalyst deactivation once carbon starts to deposit on the catalyst. Formation of metal sulfide is faster in hexane reforming than in benzene reforming. It is likely that that benzene has higher reactivity with Ni, which leads to delayed sulfur poisoning in benzene reforming.;TPO measured the amounts of carbon deposits on metal and support due to their different reactivity toward oxidation. Carbon deposition on the catalyst increases with time in both benzene and hexane reforming. More carbon is formed in hexane reforming than in benzene reforming. Carbon deposition locations are quite different as well. In benzene reforming, more carbon is deposited on the metal while in hexane reforming it is on the contrary. Carbon K-edge XANES measured the structure of carbon deposits on the used catalysts and it is found that the carbon deposits have no significant structural difference in benzene and hexane reforming. However, TEM analysis combined with EDX elemental mapping revealed that there is significant structural difference between carbon formed on the Ni and carbon on the support. Results from both reactions support a carbon deposition mechanism, i.e., carbon is formed on the metal first, and then partially dehydrogenated hydrocarbons formed on metal migrate over to the support to form coke on the support.;In summary, the difference in catalyst deactivation of steam reforming over Ni catalyst with the presence of sulfur poison for benzene and hexane reforming is well explained by the metal reactivity with different structured hydrocarbons. The hydrocarbons with higher reactivity (such as benzene) protects the catalyst by delaying the formation of Ni sulfide through more competitive absorption on metal, leading to more available Ni sites for steam reforming and gasification. Higher gasification activity allows less carbon deposits on the metal and also less migration of partially dehydrogenated hydrocarbons to the support, which helps maintain steam activation on the support and stable catalyst activity for steam reforming reaction.
机译:在镍和铑催化剂上,在有和没有硫的条件下,于800 oC进行了己烷和苯的蒸汽重整以生产氢气,以了解蒸汽重整反应中的失活机理以及烃结构如何影响反应过程。使用初期湿润浸渍法合成了三种催化剂:负载在20%CeO 2改性的Al2O3(分别表示为“ 2Ni / CeAl”和“ 10Ni / CeAl”)上的2%和10%Ni催化剂,以及负载2%Rh的催化剂在相同的支撑上(表示为“ 2Rh / CeAl”)。 10Ni / CeAl催化剂是研究的重点,而2Ni / CeAl和2Rh / CeAl催化剂用作对照样品。发现在有硫中毒的情况下,在10Ni / CeAl上,己烷重整中的催化剂失活比苯重整中的失活快得多。程序升温氧化(TPO)和近边缘结构的X射线吸收(XANES)光谱,透射电子显微镜(TEM)和X射线衍射(XRD)一起用于了解催化剂的失活机理和烃结构对催化剂失活。硫K-edge XANES测定并估算了蒸汽重整反应后催化剂上形成的硫种类。对于苯和己烷重整,催化剂上形成的硫种类相同,即硫化镍和硫酸盐,一旦碳开始沉积在催化剂上,它们与催化剂失活就不相关。在己烷重整中,金属硫化物的生成比在苯重整中更快。苯可能与Ni具有更高的反应性,从而导致苯重整中的硫中毒延迟。TPO测量了金属和载体上的碳沉积量,因为它们对氧化的反应性不同。在苯和己烷重整中,催化剂上的碳沉积随时间增加。在己烷重整中比在苯重整中形成更多的碳。碳沉积位置也完全不同。相反,在苯重整中,更多的碳沉积在金属上,而在己烷重整中则相反。碳K-edge XANES测定了用过的催化剂上碳沉积物的结构,发现该碳沉积物在苯和己烷重整中没有明显的结构差异。然而,TEM分析与EDX元素图谱相结合显示,Ni上形成的碳与载体上的碳之间存在明显的结构差异。两种反应的结果都支持碳沉积机理,即首先在金属上形成碳,然后在金属上形成的部分脱氢的烃迁移到载体上,从而在载体上形成焦炭。在Ni催化剂上进行蒸汽重整,并在苯中有硫磺毒物存在,而己烷重整很好地解释了与不同结构烃的金属反应性。具有较高反应活性的碳氢化合物(例如苯)通过在金属上更具竞争性的吸收来延迟硫化镍的形成,从而保护催化剂,从而为蒸汽重整和气化提供了更多可用的镍位。较高的气化活性允许较少的碳沉积在金属上,以及较少的部分脱氢的烃向载体的迁移,这有助于维持载体上的蒸汽活化和用于蒸汽重整反应的稳定催化剂活性。

著录项

  • 作者

    Kim, Kyungsoo.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Chemical engineering.;Materials science.;Chemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号