首页> 外文学位 >Molecular Recognition and Structural Influences on Function in Bio-nanosystems of Nucleic Acids and Proteins.
【24h】

Molecular Recognition and Structural Influences on Function in Bio-nanosystems of Nucleic Acids and Proteins.

机译:分子识别和结构对核酸和蛋白质生物纳米系统功能的影响。

获取原文
获取原文并翻译 | 示例

摘要

This work examines smart material properties of rational self-assembly and molecular recognition found in nano-biosystems. Exploiting the sequence and structural information encoded within nucleic acids and proteins will permit programmed synthesis of nanomaterials and help create molecular machines that may carry out new roles involving chemical catalysis and bioenergy.;Responsive to different ionic environments thru self-reorgnization, nucleic acids (NA) are nature's signature smart material; organisms such as viruses and bacteria use features of NAs to react to their environment and orchestrate their lifecycle. Furthermore, nucleic acid systems (both RNA and DNA) are currently exploited as scaffolds; recent applications have been showcased to build bioelectronics and biotemplated nanostructures via directed assembly of multidimensional nanoelectronic devices 1. Since the most stable and rudimentary structure of nucleic acids is the helical duplex, these were modeled in order to examine the influence of the microenvironment, sequence, and cation-dependent perturbations of their canonical forms. Due to their negatively charged phosphate backbone, NA's rely on counterions to overcome the inherent repulsive forces that arise from the assembly of two complementary strands. As a realistic model system, we chose the HIV-TAR helix (PDB ID: 397D) to study specific sequence motifs on cation sequestration. At physiologically relevant concentrations of sodium and potassium ions, we observed sequence based effects where purine stretches were adept in retaining high residency cations. The transitional space between adenine and guanosine nucleotides (ApG step) in a sequence proved the most favorable. This work was the first to directly show these subtle interactions of sequence based cationic sequestration and may be useful for controlling metallization of nucleic acids in conductive nanowires. Extending the study further, we explored the degree to which the structure of NA duplexes alone interacted with cations distinct from a specific sequence. Under physiologically relevant conditions, a duplex of RNA polyguanine-polycitidine was highly responsive and able to sequester cations to the middle of the purine stretches. The least responsive structure was a DNA polyadenine-polythymine duplex. A random sequence DNA duplex contorted into an RNA-like helix resulted in cationic dynamics similar to RNA systems. These studies showed that cation diffusive binding events in nucleic acid duplex structures are sequence specific and heavily influenced by structural aspects helical forms to account for much of the differences observed.;Although structural information in nucleic acids is encoded within their sequence, linking amino acid sequence to protein structure is murkier; the structural information within proteins is encoded by the folding process itself: a complex phenomenon driven toward the equilibrium state of the active conformation. Upwards of two thirds of a protein's sequence can be substituted with similar amino acids without significantly perturbing its function; conserved residues of about 10% seem to be vital; since evolutionary selection pressure in proteins operates 3-dimenionally, a linear sequence is partially informative. We explored this problem by folding de-novo the cytosolic portion of the membrane protein, cellulose synthase, CESA1 from upland cotton, Gossypium hirsutum (Ghcesa1). The cytoplasmic region was generated by homology modeling and refined with molecular dynamics. These mutations impair local structural flexibility which likely results in cellulose that is produced at a lower rate and is less crystalline. Additional modeling of fragments of cellulose synthases from the model plant, Arabidopsis thaliana, offered novel insights into the function of conserved cytosolic domains within plant cellulose synthases. Transport mechanisms related to the transmembrane region revealed significant differences between plants and a bacterial complex. These studies generated possible mutations that may allow for the creation of new synthases and identified other avenues of research in order to develop technologies that may alter the crystallinity and other useful properties of cellulose.;1. Karplus, K., SAM-T08, HMM-based protein structure prediction. Nucleic Acids Research, 2009. 37: p. W492-W497.
机译:这项工作研究了纳米生物系统中合理的自组装和分子识别的智能材料特性。利用核酸和蛋白质中编码的序列和结构信息将允许纳米材料的程序化合成,并有助于创建可能发挥新作用的分子机器,包括化学催化和生物能。;通过自我重组,对不同离子环境的响应,核酸(NA )是自然界的标志性智慧材料;诸如病毒和细菌之类的生物利用NA的特征来对环境做出反应并协调其生命周期。此外,核酸系统(RNA和DNA)目前都被用作支架。已经展示了通过定向纳米多维电子器件的组装来构建生物电子学和生物模板化纳米结构的最新应用。1.由于核酸的最稳定和最基本的结构是螺旋双链体,因此对它们进行了建模以检查微环境,序列,以及其规范形式的依赖阳离子的扰动由于其带负电的磷酸骨架,NA依靠抗衡离子来克服两条互补链的组装所产生的固有排斥力。作为一个现实的模型系统,我们选择了HIV-TAR螺旋(PDB ID:397D)来研究阳离子螯合中的特定序列基序。在钠和钾离子的生理相关浓度下,我们观察到了基于序列的效应,其中嘌呤伸展段擅长保留高驻留阳离子。序列中腺嘌呤和鸟苷核苷酸之间的过渡空间(ApG步骤)被证明是最有利的。这项工作是第一个直接显示基于序列的阳离子螯合的微妙相互作用的工具,可用于控制导电纳米线中核酸的金属化。进一步扩展研究范围,我们探索了NA双链体单独与阳离子与特定序列不同的相互作用的程度。在生理相关条件下,RNA聚鸟嘌呤-聚胞苷的双链体具有高响应性,并且能够将阳离子螯合到嘌呤段的中间。反应最少的结构是DNA聚腺嘌呤-聚胸腺嘧啶双链体。扭曲成RNA样螺旋的随机序列DNA双链体产生类似于RNA系统的阳离子动力学。这些研究表明,核酸双链体结构中的阳离子扩散结合事件是序列特异性的,并且受到结构方面螺旋形式的严重影响,以解释观察到的许多差异。;尽管核酸中的结构信息是在其序列内编码的,但连接氨基酸序列蛋白质结构更暗淡;蛋白质内部的结构信息由折叠过程本身编码:这是一种朝着活性构象的平衡状态驱动的复杂现象。蛋白质序列的三分之二以上可以被相似的氨基酸取代,而不会显着影响其功能。大约10%的保守残基似乎至关重要;由于蛋白质中的进化选择压力在3维方向上起作用,因此线性序列具有部分信息意义。我们通过从陆地棉棉花陆地棉(Ghcesa1)折叠膜蛋白,纤维素合酶,CESA1的胞质部分的折叠来探索这个问题。通过同源性建模产生细胞质区域,并利用分子动力学进行精制。这些突变削弱了局部结构的柔韧性,这可能导致纤维素以较低的速率产生并且结晶较少。来自拟南芥拟南芥纤维素合成酶片段的其他建模为植物纤维素合成酶中保守的胞质结构域的功能提供了新的见解。与跨膜区域有关的运输机制揭示了植物与细菌复合物之间的显着差异。这些研究产生了可能的突变,这些突变可能允许创建新的合酶,并确定了其他研究途径,以便开发可以改变纤维素的结晶度和其他有用特性的技术。 Karplus,K.,SAM-T08,基于HMM的蛋白质结构预测。核酸研究,2009年。37:p。 W492-W497。

著录项

  • 作者

    Sethaphong, Latsavongsakda.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Materials science.;Nanotechnology.;Computer science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 318 p.
  • 总页数 318
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号