首页> 外文学位 >Numerical solution of multiscale electromagnetic systems.
【24h】

Numerical solution of multiscale electromagnetic systems.

机译:多尺度电磁系统的数值解。

获取原文
获取原文并翻译 | 示例

摘要

The Discontinuous Galerkin time domain (DGTD) method is promising in modeling of realistic multiscale electromagnetic systems. This method defines the basic concept for implementing the communication between multiple domains with different scales.;Constructing a DGTD system consists of several careful choices: (a) governing equations; (b) element shape and corresponding basis functions for the spatial discretization of each subdomain; (c) numerical fluxes onto interfaces to bond all subdomains together; and (d) time stepping scheme based on properties of a discretized system. This work present the advances in each one of these steps. First, a unified framework based on the theory of differential forms and the finite element method is used to analyze the discretization of the Maxwell's equations. Based on this study, field intensities (E and H) are associated to 1-forms and curl-conforming basis functions; flux densities (D and B) are associated to 2-forms and divergence-conforming basis functions; and the constitutive relations are defined by Hodge operators.;A different approach is the study of numerical dispersion. Semidiscrete analysis is the traditional method, but for high order elements modal analysis is prefered. From these analyses, we conclude that a correct discretization of fields belonging to different p-form (e.g., E and B ) uses basis functions with same order of interpolation; however, different order of interpolation must be used if two fields belong to the same p-form (e.g., E and H). An alternative method to evaluate numerical dispersion based on evaluation of dispersive Hodge operators is also presented. Both dispersion analyses are equivalent and reveal same fundamental results. Eigenvalues, eigenvector and transient results are studied to verify accuracy and computational costs of different schemes. Two different approaches are used for implementing the DG Method. The first is based on E and H fields, which use curl-conforming basis functions with different order of interpolation. In this case, the Riemman solver shows the best performance to treat interfaces between subdomains. A new spectral prismatic element, useful for modeling of layer structures, is also implemented for this approach. Furthermore, a new efficient and very accurate time integration method for sequential subdomains is implemented. The second approach for solving multidomain cases is based on E and B fields, which use curl- and divergence-conforming basis functions, respectively, with same order of interpolation. In this way, higher accuracy and lower memory consumption are obtained with respect to the first approach based on E and H fields. The centered flux is used to treat interfaces with non-conforming meshes, and both explicit Runge-Kutta method and implicit Crank-Nicholson method are implemented for time integration.;Numerical examples and realistic cases are presented to verify that the proposed methods are non-spurious and efficient DGTD schemes.
机译:不连续Galerkin时域(DGTD)方法在现实的多尺度电磁系统建模中很有希望。该方法定义了实现具有不同规模的多个域之间的通信的基本概念。构造DGTD系统包括几个仔细的选择:(a)控制方程式; (b)每个子域的空间离散化的元素形状和相应的基函数; (c)界面上的数字通量,以将所有子域结合在一起; (d)基于离散系统的属性的时间步进方案。这项工作介绍了每个步骤中的进展。首先,基于微分形式理论和有限元方法的统一框架用于分析麦克斯韦方程组的离散化。根据这项研究,场强(E和H)与1形式和符合卷曲度的基函数相关。通量密度(D和B)与2形式和散度符合基函数相关;本构关系由Hodge算子定义。一种不同的方法是研究数值色散。半离散分析是传统方法,但是对于高阶元素,模态分析是首选。从这些分析中,我们得出结论,属于不同p形式(例如E和B)的场的正确离散化使用具有相同插值顺序的基函数。但是,如果两个字段属于同一p格式(例如E和H),则必须使用不同的插值顺序。还提出了一种基于色散Hodge算子评估的数值色散评估方法。两种色散分析是等效的,并揭示了相同的基本结果。研究了特征值,特征向量和瞬态结果,以验证不同方案的准确性和计算成本。两种不同的方法用于实现DG方法。第一种基于E和H字段,它们使用具有不同插值顺序的卷曲符合基函数。在这种情况下,Riemman求解器显示出最佳性能来处理子域之间的接口。此方法还实现了一种新的光谱棱镜元素,可用于图层结构建模。此外,实现了一种用于顺序子域的新的高效且非常准确的时间积分方法。解决多域情况的第二种方法是基于E字段和B字段,这两个字段分别使用具有卷曲和散度一致性的基函数,并且插值顺序相同。以这种方式,相对于基于E和H字段的第一种方法,可以获得更高的准确性和更低的内存消耗。中心通量用于处理不合格网格的界面,并实现了显式Runge-Kutta方法和隐式Crank-Nicholson方法进行时间积分。;通过数值算例和实际案例验证了所提出的方法是否非协调性。虚假且有效的DGTD方案。

著录项

  • 作者

    Tobon Llano, Luis Eduardo.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Computer.;Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号