首页> 外文学位 >Spin valve sensor for biomolecular identification: Design, fabrication, and characterization.
【24h】

Spin valve sensor for biomolecular identification: Design, fabrication, and characterization.

机译:用于生物分子识别的自旋阀传感器:设计,制造和表征。

获取原文
获取原文并翻译 | 示例

摘要

Biomolecular identification, e.g., DNA recognition, has broad applications in biology and medicine such as gene expression analysis, disease diagnosis, and DNA fingerprinting. Therefore, we have been developing a magnetic biodetection technology based on giant magnetoresistive spin valve sensors and magnetic nanoparticle (20 nm in diameter) biomolecular labels in an effort to provide a highly sensitive, quantitative, portable, and cost-effective biomolecular identification device. This dissertation is concentrated on the design, modeling, fabrication, and characterization of the spin valve sensors, aiming to prove the magnetic biodetection concept and demonstrate the feasibility and sensitivity of the magnetic nanoparticle detection by the spin valve sensors.; The intended magnetic nanoparticle labels are superparamagnetic at room temperature with zero magnetic remanence, and thus need to be magnetically excited in order to generate magnetic fields detectable by the field-sensitive spin valve sensors. Either DC or AC magnetic excitation can be applied, and we have designed several nanoparticle detection schemes. An analytical model has been developed for the magnetic nanoparticle detection, assuming the equivalent average field of magnetic nanoparticles and the coherent rotation of spin valve free layer magnetization. Micromagnetic simulations have also been performed for the spin valve sensors. The analytical model and micromagnetic simulations are found consistent with each other and are in good agreement with experiments.; The prototype spin valve sensors have been fabricated at both micron and submicron scales. We demonstrated the detection of a single 2.8-mum magnetic microbead by micron-sized spin valve sensors. Based on polymer-mediated self-assembly and fine lithography, a bilayer lift-off process was developed to deposit magnetic nanoparticles onto the sensor surface in a controlled manner. With the lift-off deposition method, we have successfully demonstrated the room temperature detection of monodisperse 16-nm Fe3O 4 nanoparticles in a quantity from a few tens to several hundreds by submicron spin valve sensors, proving the feasibility of the nanoparticle detection. As desired for quantitative biodetection, a fairly linear dependence of sensor signal on the number of nanoparticles has been confirmed. The initial detection of DNA hybridization events labeled by magnetic nanoparticles further proved the magnetic biodetection concept.
机译:生物分子识别,例如DNA识别,在生物学和医学领域具有广泛的应用,例如基因表达分析,疾病诊断和DNA指纹识别。因此,我们一直在开发一种基于巨型磁阻旋转阀传感器和磁性纳米颗粒(直径小于20 nm)生物分子标记物的磁性生物检测技术,以期提供一种高度灵敏,定量,便携式且经济高效的生物分子识别设备。本文主要研究了自旋阀传感器的设计,建模,制造和表征,旨在证明自旋生物传感器的概念,并证明自旋阀传感器进行磁性纳米粒子检测的可行性和灵敏度。预期的磁性纳米颗粒标记物在室温下具有零剩磁,因此是超顺磁性的,因此需要进行磁激发,以产生可被场敏感型旋转阀传感器检测到的磁场。可以应用DC或AC磁激励,并且我们设计了几种纳米粒子检测方案。假设磁性纳米粒子的等效平均场和自旋阀自由层磁化的相干旋转,已经开发了用于磁性纳米粒子检测的分析模型。对旋转阀传感器也进行了微磁仿真。分析模型和微磁模拟相互一致,与实验吻合良好。原型自旋阀传感器已在微米和亚微米规模上制造。我们证明了微米大小的旋转阀传感器可检测到一个2.8微米的磁性微珠。基于聚合物介导的自组装和精细光刻,开发了一种双层剥离工艺,以可控方式将磁性纳米颗粒沉积到传感器表面上。利用剥离沉积法,我们已经成功地演示了通过亚微米旋转阀传感器检测几十到几百个数量的单分散16-nm Fe3O 4纳米粒子的室温,证明了纳米粒子检测的可行性。如定量生物检测所希望的,已经证实传感器信号对纳米颗粒数量的线性关系。磁性纳米颗粒标记的DNA杂交事件的初始检测进一步证明了磁性生物检测的概念。

著录项

  • 作者

    Li, Guanxiong.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号