首页> 外文学位 >Electronic structure imperfections and chemical bonding at graphene interfaces.
【24h】

Electronic structure imperfections and chemical bonding at graphene interfaces.

机译:石墨烯界面的电子结构缺陷和化学键合。

获取原文
获取原文并翻译 | 示例

摘要

The manifestation of novel phenomena upon scaling to finite size has inspired a paradigm shift in materials science that takes advantage of the distinctive electrical and physical properties of nanomaterials. Remarkably, the simple honeycomb arrangement of carbon atoms in a single atomic layer has become renowned for exhibiting never-before-seen electronic and physical phenomena. This archetypal 2-dimensional nanomaterial is known as graphene, a single layer of graphite. Early reports in the 1950's eluded to graphene-like nanostructures that were evidenced from exfoliation of oxidized graphite followed by chemical reduction, absorbed carbon on transition metals, and thermal decomposition of SiC. Furthermore, the earliest tight binding approximation calculations in the 1950's held clues that a single-layer of graphite would behave drastically different than bulk graphite. Not until 2004, when Giem and Novoselov first synthesized graphene by mechanical exfoliation from highly-oriented pyrolytic graphite did the field of graphene-based research bloom within the scientific community.;Since 2004, the availability and relatively straight forward synthesis of single-layer graphene (SLG) enabled the observation of remarkable phenomena including: massless Dirac fermions, extremely high mobilities of its charge carriers, room temperature half-integer quantum Hall effect, the Rashba effect, and the potential for ballistic conduction over macroscopic distances. These enticing electronic properties produce the drive to study graphene for use in truly nanoscale electrical interconnects, integrated circuits, transparent conducting electrodes, ultra-high frequency transistors, and spintronic devices, just to name a few. Yet, for almost all real world applications graphene will need to be interfaced with other materials, metals, dielectrics, organics, or any combination thereof that in turn are constituted from various inorganic and organic components.;Interfacing graphene, a nanomaterial with lateral dimensions in the hundreds of microns if not larger, with a corresponding atomic vertical thickness poses significant difficulties. Graphene's unique structure is dominated by surface area or potentially hybridized interfaces; consequently, the true realization of this remarkable nanomaterial in device constructs relies on engineering graphene interfaces at the surface in order to controllably mold the electronic structure. Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy and the transmission mode analogue scanning transmission X-ray microscopy (STXM) are particularly useful tools to study the unoccupied states of graphene and graphene interfaces. In addition, polarized NEXAFS and STXM studies provide information on surface orientation, bond sterics, and the extent of substrate alignment before and after interfacial hybridization. The work presented in this dissertation is fundamentally informed by NEXAFS and STXM measurements on graphene/metal, graphene/dielectric, and graphene/organic interfaces.;We start with a general review of the electronic structure of freestanding graphene and graphene interfaces in Chapter 1. In Chapter 2, we investigate freestanding single-layer graphene via STXM and NEXAFS demonstrating that electronic structure heterogeneities from synthesis and processing are ubiquitous in 2-dimensional graphene. We show the mapping of discrete charge transfer regions as a result of doped impurities that decorate the surfaces of graphene and that transfer processing imparts local electronic corrugations or ripples. In corroboration with density functional theory, definitive assignments to the spectral features, global steric orientations of the localized domains, and quantitative charge transfer schemes are evidenced.;In the following chapters, we deliberately (Chapter 3) incorporate substitutional nitrogen into reduced graphene oxide to induce C--N charge redistribution and improve global conductivity, (Chapter 4) fabricate graphene/metal interfaces and metal/graphene/metal sandwich structures evidencing classical anisotropic umpolung chemistry from carbon pz-orbrital charge pinning, and (Chapter 5) engineer graphene/dielectric interfaces showing electron depletion from carbon atoms at the HfO2/graphene interface. The fabrication of graphene interfaces remains a critical gap for successful commercialization of graphene-based devices, yet we demonstrate that interfacial hybridization, anisotropic charge redistribution, local chemical bonding, and discrete electronic hybridization regimes play a critical role in the electronic structure at graphene interfaces.
机译:在按比例缩放到有限大小时,新现象的出现激发了材料科学的范式转变,该方法利用了纳米材料独特的电学和物理特性。值得注意的是,碳原子在单个原子层中的简单蜂窝状排列已因展现出前所未有的电子和物理现象而闻名。这种原型二维纳米材料被称为石墨烯,即单层石墨。 1950年代早期的报道还没有出现类似石墨烯的纳米结构,这可以通过氧化石墨的剥落,化学还原,过渡金属上的碳吸附以及SiC的热分解来证明。此外,最早的紧密结合近似计算是在1950年代得出的线索,即单层石墨的行为与散装石墨的行为大不相同。直到2004年Giem和Novoselov首次通过机械剥离从高取向热解石墨合成石墨烯后,基于石墨烯的研究领域才在科学界蓬勃发展;自2004年以来,单层石墨烯的可用性和相对简单的合成方法(SLG)可以观察到显着的现象,包括:无质量的狄拉克费米子,其电荷载流子的极高迁移率,室温半整数量子霍尔效应,拉什巴效应以及在宏观距离上的弹道传导潜力。这些诱人的电子特性驱使人们研究石墨烯,以用于真正的纳米级电气互连,集成电路,透明导电电极,超高频晶体管和自旋电子器件等。然而,对于几乎所有现实世界的应用来说,石墨烯都需要与其他材料,金属,电介质,有机物或它们的任意组合接口,而这些材料又由各种无机和有机成分组成。几百微米(如果不是更大的话)具有相应的原子垂直厚度会带来很大的困难。石墨烯的独特结构以表面积或潜在的杂化界面为主导。因此,在设备构造中这种卓越纳米材料的真正实现依赖于表面的工程石墨烯界面,以可控制地模制电子结构。近边缘X射线吸收精细结构(NEXAFS)光谱和透射模式模拟扫描透射X射线显微镜(STXM)是研究石墨烯和石墨烯界面的未占据状态的特别有用的工具。此外,极化的NEXAFS和STXM研究还提供了有关界面杂交前后表面取向,键空间和底物排列程度的信息。本文的工作基本上是通过NEXAFS和STXM在石墨烯/金属,石墨烯/介电体和石墨烯/有机界面上的测量获得的。第一章是对独立式石墨烯和石墨烯界面的电子结构的概述。在第二章中,我们通过STXM和NEXAFS研究了独立式单层石墨烯,证明了合成和加工过程中电子结构的异质性在二维石墨烯中无处不在。我们显示了离散的电荷转移区域的映射,这是由于掺杂的杂质修饰了石墨烯的表面,并且转移过程产生了局部电子波纹或波纹。在密度泛函理论的支持下,证明了对光谱特征的确定分配,局部域的整体空间取向以及定量电荷转移方案。在以下章节中,我们故意地(第3章)将取代氮掺入还原的氧化石墨烯中,诱导C–N电荷重新分布并改善整体导电率,(第4章)制作石墨烯/金属界面以及金属/石墨烯/金属夹心结构,证明了碳pz-或垂直电荷钉扎的经典各向异性化学性质,以及(第5章)工程石墨烯/介电界面显示HfO2 /石墨烯界面处的碳原子耗尽了电子。石墨烯界面的制造仍然是成功实现基于石墨烯的设备商业化的关键缝隙,但我们证明了界面杂交,各向异性电荷再分布,局部化学键和离散电子杂交机制在石墨烯界面的电子结构中起着至关重要的作用。

著录项

  • 作者

    Schultz, Brian Joseph.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Chemistry Physical.;Engineering Materials Science.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号