首页> 外文学位 >Asymptotic results for zeros of diffusing Gaussian analytic functions.
【24h】

Asymptotic results for zeros of diffusing Gaussian analytic functions.

机译:扩散高斯解析函数零点的渐近结果。

获取原文
获取原文并翻译 | 示例

摘要

The zero set of the Gaussian analytic function fz= n=0infinityan znn! 0.0.1 is invariant in distribution under all isometries of the plane and is amazingly "lattice-like". A recent work of Sodin and Tsirelson (2005) shows that it can be matched to a lattice with Gaussian tails. Moreover, the "hole probability" that a disk of radius R contains no zeros of f decays exponentially in the square of the area of the hole. This asymptotic behavior is also observed in the perturbed lattice model in which lattice points are perturbed by independent complex normal random variables.;We consider a time dependent version of f in which the coefficients an are allowed to evolve as independent Ornstein-Uhlenbeck processes. The study of Gaussian analytic functions as dynamic processes was initiated by Peres and Virag (2005). We show that the zero set Zf(t) of the diffusing analytic function defines a time homogeneous Markov process and the "hole probability" that Zf(t) does not intersect a fixed disk of radius R for all t ∈ [0, T] decays like exp( -TecR2 ). This result sharply differentiates the zero set of f from a number of canonical evolving planar point processes. For example, the hole probability of the perturbed lattice model { p (m + in) + xiam,n : m,n ∈ Z } where am,n are i.i.d. Ornstein-Uhlenbeck processes decays like exp(-cTR4). This stark contrast is also present in the overcrowding probability that a disk of radius R contains at least N zeros for all t ∈ [0, T].;In the last chapter we present joint work with Yuval Peres in which we compute precise asymptotics for the radius Rn of the largest disk centered at the origin covered by simple random walk run for n steps. We prove that almost surely limsupn→infinity logRn 2lognlog 3n=14, 0.0.2 where log3 denotes 3 iterations of the log function. This is motivated by a question of Erdo&huml;s and Taylor. We also obtain the analogous result for the Wiener sausage, refining a result of Meyre and Werner (1994).
机译:高斯分析函数fz = n = 0无穷大znn!的零集! 0.0.1在平面的所有等距下的分布都是不变的,并且令人惊奇地是“格状”。 Sodin和Tsirelson(2005)的最新工作表明,它可以与高斯尾巴的晶格匹配。此外,半径为R的圆盘不包含f的零的“孔概率”在孔的面积的平方中呈指数衰减。这种渐近行为也出现在摄动的晶格模型中,在该模型中晶格点被独立的复数正态随机变量摄动。我们考虑f的时间相关形式,其中的系数a被允许演化为独立的Ornstein-Uhlenbeck过程。高斯解析函数作为动态过程的研究是由Peres和Virag(2005)发起的。我们表明,扩散分析函数的零集Zf(t)定义了时间齐次Markov过程,并且对于所有t∈[0,T],Zf(t)不与半径为R的固定圆盘相交的“空洞概率”像exp(-TecR2)一样衰减。该结果将f的零集与许多典型的演化平面点过程区分开来。例如,摄动晶格模型{p(m + in)+ xiam,n:m,n∈Z}的空穴概率,其中am,n为i.d. Ornstein-Uhlenbeck过程像exp(-cTR4)一样衰减。与此形成鲜明对比的是,对于所有t∈[0,T],半径为R的圆盘至少包含N个零的人满为患概率。在上一章中,我们介绍了与尤瓦尔·佩雷斯(Yuval Peres)的联合工作,在该工作中我们计算了以下项的精确渐近性以n个步的简单随机游走覆盖的原点为中心的最大圆盘的半径Rn。我们证明几乎确定limsupn→无穷大logRn 2lognlog 3n = 14,0.0.2其中log3表示对数函数的3次迭代。这是由Erdo& s和Taylor的问题引起的。我们还获得了维纳香肠的类似结果,完善了Meyre和Werner(1994)的结果。

著录项

  • 作者

    Hough, John Benjamen.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 75 p.
  • 总页数 75
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号