首页> 外文学位 >Mechanism(s) of enhanced vascular cell response to polymeric biomaterials with nano-structured surface features.
【24h】

Mechanism(s) of enhanced vascular cell response to polymeric biomaterials with nano-structured surface features.

机译:增强血管细胞对具有纳米结构表面特征的聚合生物材料的反应的机制。

获取原文
获取原文并翻译 | 示例

摘要

Creating nanometer surface topographies on ceramics, metals, polymers, and composites thereof significantly improves the functions of some cells (such as osteoblasts, chondrocytes, smooth muscle cells, and neurons). Specifically, poly(lactic-co-glycolic acid) (PLGA) films with a nanometer surface topography promote vascular endothelial and smooth muscle cell adhesion. The objective of this in vitro research was to begin to understand the mechanisms underlying this observed increased vascular cell adhesion. For this purpose, PLGA substrates of various surface feature dimensions were exposed to serum-containing media to probe initial protein interactions that may influence subsequent vascular cell adhesion. The initial adsorbed protein layer was identified using SDS-PAGE and ELISA techniques. Results provided evidence that PLGA (both nano-structured and conventional, or those not possessing nanometer surface features) adsorbed significant quantities of both vitronectin and fibronectin from serum. Furthermore, results indicated that nano-structured PLGA adsorbed significantly more vitronectin and fibronectin when compared to conventional PLGA. When separately pre-adsorbing both vitronectin and fibronectin, increased vascular smooth muscle and endothelial cell density was observed on nano-structured (compared to conventional) PLGA. Additionally, vascular cell inhibition studies provided evidence that vitronectin and fibronectin possess different conformations (or bioactivity) on nano-structured surfaces compared to conventional surfaces. These results were supported by AFM analysis of fibronectin adsorption to PLGA films. Results indicated that fibronectin adsorbed in discrete linear patterns on cast nano-structured PLGA, while fibronectin adsorption on conventional PLGA showed no specific pattern.; The final objective of the present study was to analyze fibronectin adsorption and vascular cell adhesion to PLGA surfaces with controlled topographies. Poly(dimethysiloxane) (PDMS) casting techniques were utilized to create templates of polystyrene (PS) nano-particle arrays. PLGA films cast onto these templates created features similar to the original PS arrays. Results from fibronectin adsorption and vascular cell adhesion to these surfaces showed that the 200 nm PLGA surface had extended fibronectin structures and improved vascular smooth muscle and endothelial cell adhesion compared to smooth controls.; Taken together, the results of the present in vitro study provided evidence that cell adhesive proteins adsorbed in different quantities, and possibly conformations, on nano-structured compared to conventional PLGA topographies; this may in part, account for increased vascular cell adhesion on nano-structured PLGA. In this manner, the present study continues to provide evidence of the promise of nano-structured PLGA for vascular tissue engineering applications.
机译:在陶瓷,金属,聚合物及其复合材料上创建纳米表面形貌可显着改善某些细胞(如成骨细胞,软骨细胞,平滑肌细胞和神经元)的功能。具体而言,具有纳米表面形貌的聚(乳酸-乙醇酸共聚物)(PLGA)膜可促进血管内皮和平滑肌细胞的粘附。这项体外研究的目的是开始了解所观察到的血管细胞粘附增加的潜在机制。为此,将各种表面特征尺寸的PLGA底物暴露于含血清的培养基中,以探测可能影响后续血管细胞粘附的初始蛋白质相互作用。使用SDS-PAGE和ELISA技术鉴定了最初吸附的蛋白质层。结果提供了证据,PLGA(纳米结构的和常规的,或不具有纳米表面特征的那些)从血清中吸收了大量的玻连蛋白和纤连蛋白。此外,结果表明,与常规PLGA相比,纳米结构PLGA吸附的玻连蛋白和纤连蛋白明显更多。当分别预先吸附玻连蛋白和纤连蛋白时,在纳米结构(与传统)PLGA上观察到血管平滑肌和内皮细胞密度增加。另外,血管细胞抑制研究提供了证据,与常规表面相比,玻连蛋白和纤连蛋白在纳米结构表面上具有不同的构象(或生物活性)。这些结果得到了纤连蛋白对PLGA膜吸附的AFM分析的支持。结果表明,纤连蛋白以离散的线性模式吸附在铸造的纳米结构PLGA上,而纤连蛋白在常规PLGA上的吸附没有特定的模式。本研究的最终目的是通过控制形貌分析纤连蛋白的吸附和血管细胞对PLGA表面的粘附。聚(二甲基硅氧烷)(PDMS)铸造技术用于创建聚苯乙烯(PS)纳米颗粒阵列的模板。将PLGA胶片投射到这些模板上可以创建与原始PS阵列相似的功能。纤连蛋白吸附和血管细胞粘附于这些表面的结果表明,与光滑对照组相比,200 nm PLGA表面具有扩展的纤连蛋白结构并改善了血管平滑肌和内皮细胞的粘附。综上所述,本体外研究的结果提供了证据,表明与常规PLGA拓扑结构相比,细胞粘附蛋白在纳米结构上吸附的数量和结构可能不同。这可能部分解释了纳米结构PLGA上血管细胞粘附的增加。以这种方式,本研究继续提供了用于血管组织工程应用的纳米结构PLGA的前景的证据。

著录项

  • 作者

    Miller, Derick C.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 84 p.
  • 总页数 84
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号