首页> 外文学位 >Numerical studies of mantle convection and thermal evolution of the terrestrial planets.
【24h】

Numerical studies of mantle convection and thermal evolution of the terrestrial planets.

机译:地幔对流和地球行星热演化的数值研究。

获取原文
获取原文并翻译 | 示例

摘要

Data from spacecraft along with Earth-based observations acquired over the past forty years have revealed many similarities among the four inner planets. It is generally accepted that Mercury, Venus, Earth, and Mars formed from accretion in the solar nebula based on their similar surface ages, densities and direction of revolution around the Sun. Because the net cooling of Earth is largely controlled by mantle convection, it is likely that mantle convection has also played a role in the thermal evolution of Mercury, Venus and Mars. There is implicit evidence for internal convection on Earth due to oceanic ridges and surface plate motions; however, it is difficult to determine whether the other inner planets experience or have experienced mantle convection. The assumption made by planetary scientists is that large terrestrial bodies containing concentrations of radiogenic heat sources comparable to that of Earth's must somehow transfer their internal heat to the crust in a similar fashion to Earth. Because heat escape likely drives thermal convection in the mantle, it is unlikely that mantle convection did not exist on the other terrestrial planets. Possible forms of convection on Mercury, Venus and Mars are mantle overturning event(s), small-scale convection, edge-driven convection, mantle plumes and localized impact induced convection.; In this research the possibility of convection on Mars and Mercury and its implication toward the thermal evolution of each planet is examined. In particular, the role of a mantle plume(s) in the formation of the Tharsis Rise, Mars and sluggish convection in a Mercurian mantle as a means to maintain a core dynamo are addressed. The planet Venus is more complicated due to high temperature and pressure at the surface. Mantle convection likely exists on Venus but the lack of plate tectonics prohibits efficient cooling of the mantle. Specific topics to address through thermal evolution modeling are the effect of high surface temperatures on mantle convection and whether dynamic processes from the mantle can support the observed high topography. Because 1D numerical models oversimplify the full equations of convectioe motion, this research uses 2D Cartesian, 2D spherical axisymmetric and 3D spherical geometries.
机译:来自航天器的数据以及过去四十年来获得的基于地球的观测资料揭示了四个内行星之间的许多相似之处。人们普遍认为,水星,金星,地球和火星是根据太阳星云中相似的表面年龄,密度和绕太阳公转的方向由吸积形成的。由于地球的净冷却在很大程度上受地幔对流的控制,因此地幔对流很可能也在水星,金星和火星的热演化中发挥了作用。有隐性证据表明,由于海脊和地表板块运动,地球内部对流;但是,很难确定其他内部行星是否经历过地幔对流。行星科学家的假设是,含有与地球相当的放射源热源浓度的大型地面物体,必须以某种方式将其内部热量以类似于地球的方式传递给地壳。由于热量散逸可能会推动地幔中的热对流,因此其他地面行星上不存在地幔对流的可能性不大。对水星,金星和火星的对流的可能形式是地幔翻转事件,小尺度对流,边缘驱动对流,地幔柱和局部撞击诱发的对流。在这项研究中,研究了火星和水星对流的可能性及其对每个行星热演化的影响。特别地,解决了地幔柱在塔西西斯上升,火星形成和水星对流中缓慢的对流作为维持核心发电机的手段中的作用。由于表面高温和高压,金星行星变得更加复杂。金星上可能存在地幔对流,但是缺乏板块构造阻碍了地幔的有效冷却。通过热演化模型要解决的特定主题是高表面温度对地幔对流的影响以及地幔的动态过程是否可以支持观测到的高形貌。由于一维数值模型过分简化了对流运动的完整方程,因此本研究使用2D直角坐标,2D球面轴对称和3D球面几何形状。

著录项

  • 作者

    Holman, Hannah Lynn.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Geophysics.; Physics Astronomy and Astrophysics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;天文学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号