首页> 外文学位 >Defects in hard-sphere colloidal crystals.
【24h】

Defects in hard-sphere colloidal crystals.

机译:硬球胶体晶体中的缺陷。

获取原文
获取原文并翻译 | 示例

摘要

Colloidal crystals of 1.55 microm diameter silica particles were grown on {100} and flat templates by sedimentation and centrifugation. The particles interact as hard spheres. The vacancies and divacancies in these crystals are not in equilibrium, since no movement of single vacancies is observed. The lack of mobility is consistent with the extrapolation of earlier simulations at lower densities. The volume of relaxation of the vacancy has a plausible value for these densities as the volume of formation is approaching the volume in a close-packed crystal. The volume of relaxation for the divacancy is smaller than that of two vacancies, so that the association of two vacancies into a divacancy requires extra volume, and hence extra entropy. The mean square displacement of the nearest neighbors of the vacancies is an order of magnitude larger than that of the nearest neighbors of particles. The mobility of the divacancies is consistent with the extrapolation of older simulations and is similar to that associated with the annihilation of the vacancy-interstitial pair. The volume of motion of the divacancies is DeltaVm = 0.19Vo (Vo: close-packed volume) and the entropy of motion is DeltaSm = 0.49kBT. Dislocation-twin boundary interactions can be observed by introducing strain via a misfit template. The dislocations formed are Shockley partials. When a dislocation goes through the boundary, two more dislocations are created: a reflected dislocation and one left at the boundary, both with the same magnitude Burgers vector. The dislocations relieve a total of about a third of the misfit strain. The remaining strain is sufficiently large to move the dislocation up to the boundary and close to sufficient to move the dislocation through the boundary. A small amount to extra strain energy is needed to cause nucleation of the two additional dislocations after a waiting time.
机译:通过沉淀和离心,在{100}和平坦的模板上生长直径为1.55微米的二氧化硅颗粒的胶体晶体。粒子作为硬球相互作用。这些晶体中的空位和空位不平衡,因为没有观察到单个空位的运动。流动性的缺乏与较低密度下早期模拟的推论一致。当形成的体积接近密堆积晶体中的体积时,空位的松弛体积对于这些密度具有合理的值。空位的弛豫量小于两个空位的弛豫量,因此将两个空位关联到一个空位需要额外的体积,因此需要额外的熵。空位的最近邻的均方位移比粒子的最近邻的均方位移大一个数量级。空位的迁移率与较旧模拟的外推一致,并且与空位-间隙对的an灭相关。空位的运动量为DeltaVm = 0.19Vo(Vo:密堆积体积),运动的熵为DeltaSm = 0.49kBT。通过错配模板引入应变,可以观察到位错-孪生边界相互作用。形成的位错是肖克利局部。当位错穿过边界时,会再创建两个位错:一个反射型位错和一个位于边界上的位错,它们的汉堡矢量都相同。脱位可减轻大约三分之一的失配应变。剩余的应变足够大以使位错向上移动到边界,并且接近足以使位错穿过边界移动。在等待时间之后,需要少量额外的应变能以引起另外两个位错的形核。

著录项

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Physics General.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号