首页> 外文学位 >Mechanisms of release, metabolism and action of purines in the enteric and central nervous systems.
【24h】

Mechanisms of release, metabolism and action of purines in the enteric and central nervous systems.

机译:嘌呤在肠和中枢神经系统中的释放,代谢和作用机制。

获取原文
获取原文并翻译 | 示例

摘要

In Chapter 2 of this dissertation we utilized a single cell model to examine storage and release of NAD+ from vesicles in nerve-growth factor (NGF)-differentiated rat pheochromocytoma PC12 cells which phenotypically resemble sympathetic neurons. In this study we verified the presence of NAD + in vesicles along with ATP and catecholamines (dopamine). Interestingly, we revealed differential mechanisms of release of these three substances from vesicles: release of NAD+ and dopamine required intact SNAP-25-mediated exocytosis whereas ATP was released largely via SNAP-25-independent mechanisms. These observations in conjunction with a previous finding demonstrating &ohgr;-conotoxin GVIA-insensitive ATP release in blood vessels led us to question the true identity of the NANC neurotransmitter in GI muscles where purinergic neurotransmission was first described.;In Chapter 3 we demonstrated that electrical field stimulation (EFS) evoked release of NAD+ that was dependent on the level of nerve stimulation and was significantly attenuated by blockers of neural activity. We also demonstrated that postsynaptic hyperpolarizations to exogenous NAD + were abolished by factors inhibiting the endogenous purine-mediated IJP. On the other hand, release and postsynaptic effects of ATP remained largely intact by inhibitors of enteric purine neurotransmission. Therefore our evidence suggests that NAD+ is a better candidate than ATP as the purinergic inhibitory motor transmitter in colons from humans and non-human primates.;In Chapter 4 we examined postjunctional effects of direct metabolites of ATP and NAD+, adenosine 5'-diphosphate (ADP) and ADP-ribose (ADPR), respectively, in colonic muscles. First, we demonstrated that these metabolites are produced very rapidly in murine and primate colons (within 1 sec). Next, we found that membrane hyperpolarizations to ADPR, but not to ADP, mimicked the pharmacology of endogenous purine response; this is the first study demonstrating a bioactive role of ADPR in enteric smooth muscles. Our evidence indicates that rapid metabolism cannot explain the failure of ATP to match the endogenous transmitter in colon. Moreover our evidence suggests that multiple purines might contribute to enteric inhibitory responses produced during NANC neurotransmission. Thus purinergic inhibitory regulation of enteric smooth muscle is more complex than originally believed.;In Chapter 5 we attempted to clarify the sites of release of ATP and NAD+ in GI smooth muscles by utilizing an alternative approach to stimulate purine release. Here we chemically activated the neuronal ligand-gated ion channel receptors, nicotinic acetylcholine receptors and serotonin 5-HT3 receptors, which are localized on cell bodies and dendrites of inhibitory motor neurons. We demonstrated that the release of ATP and NAD+ upon activation of these receptors originated from different sites within neurons and via different mechanisms. The release of NAD+ appeared to originate exclusively from nerve terminals and was abolished by neural inhibitors. However the release of ATP remained intact in the presence of neural inhibitors suggesting that ATP release may have originated primarily from the nerve cell bodies. Therefore in agreement with our previous studies release of NAD+ in the gut occurs by mechanisms consistent for a neurotransmitter.;In Chapter 6 we examined release, metabolism and postjunctional effects of NAD+ in the rat brain. We demonstrated that in isolated rat forebrain synaptosomes NAD+ is released by mechanisms requiring intact vesicle exocytosis machinery. We also found that localized application of NAD+ (and ADPR) elicited Ca2+ transients in cultured cortical neurons suggesting that endogenous NAD+ could participate in neuronal-neuronal communication in the brain. Finally, we demonstrated that mechanisms involved in terminating the extracellular action of NAD+ exist in the brain. This is the first study suggesting that NAD+ qualifies as a putative neurotransmitter in the CNS. (Abstract shortened by UMI.).
机译:在本论文的第2章中,我们使用单细胞模型检查了NAD +在神经生长因子(NGF)分化的大鼠嗜铬细胞瘤PC12细胞中从囊泡中的储存和释放,其在表型上类似于交感神经元。在这项研究中,我们验证了NAD +与ATP和儿茶酚胺(多巴胺)一起存在于囊泡中。有趣的是,我们揭示了从小泡中释放这三种物质的不同机制:NAD +和多巴胺的释放需要完整的SNAP-25介导的胞吐作用,而ATP主要通过不依赖SNAP-25的机制释放。这些发现与先前的发现表明血管内对-conotoxin GVIA不敏感的ATP释放有关,从而使我们对GI肌肉中NANC神经递质的真实身份提出质疑,在该肌肉中嘌呤能神经传递是首次描述的;在第3章中,我们证明了电电场刺激(EFS)引起NAD +的释放,而NAD +的释放取决于神经刺激的水平,并被神经活动阻滞剂显着减弱。我们还证明了抑制内源性嘌呤介导的IJP的因素消除了对外源NAD +的突触后超极化。另一方面,ATP的释放和突触后作用在很大程度上仍被肠嘌呤嘌呤神经传递抑制剂所完好无损。因此,我们的证据表明,NAD +在人类和非人类灵长类动物的结肠中作为嘌呤能抑制运动传递因子的作用优于ATP .;在第4章中,我们研究了ATP和NAD +直接代谢产物腺苷5'-二磷酸( ADP)和ADP-核糖(ADPR),分别位于结肠肌肉中。首先,我们证明了这些代谢产物在鼠和灵长类动物结肠中非常迅速地产生(在1秒内)。接下来,我们发现对ADPR而非ADP的膜超极化模仿了内源性嘌呤应答的药理学;这是第一项证明ADPR在肠平滑肌中具有生物活性的研究。我们的证据表明快速代谢不能解释ATP与结肠内源递质匹配的失败。此外,我们的证据表明,多种嘌呤可能有助于NANC神经传递过程中产生的肠抑制反应。因此,肠平滑肌的嘌呤能抑制调节比最初认为的更为复杂。在第5章中,我们试图通过利用另一种刺激嘌呤释放的方法来阐明胃肠道平滑肌中ATP和NAD +的释放位点。在这里,我们化学激活了神经元配体门控离子通道受体,烟碱乙酰胆碱受体和5-羟色胺5-HT3受体,它们位于抑制性运动神经元的细胞体和树突上。我们证明了激活这些受体后,ATP和NAD +的释放源自神经元内的不同部位并通过不同的机制。 NAD +的释放似乎仅源于神经末梢,并被神经抑制剂所消除。但是,在存在神经抑制剂的情况下,ATP的释放仍然完好无损,这表明ATP的释放可能主要源自神经细胞体。因此,与我们先前的研究相一致,肠道中NAD +的释放是通过与神经递质一致的机制发生的。在第六章中,我们研究了NAD +在大鼠脑中的释放,代谢和结后作用。我们证明,在分离的大鼠前脑突触小体中,NAD +是通过需要完整的囊泡胞吐机制的机制释放的。我们还发现,NAD +(和ADPR)的局部应用在培养的皮层神经元中引起Ca2 +瞬变,表明内源性NAD +可以参与大脑中的神经元-神经元沟通。最后,我们证明了大脑中存在终止NAD +细胞外作用的机制。这是第一项表明NAD +在中枢神经系统中被假定为神经递质的研究。 (摘要由UMI缩短。)。

著录项

  • 作者

    Durnin, Leonie.;

  • 作者单位

    University of Nevada, Reno.;

  • 授予单位 University of Nevada, Reno.;
  • 学科 Biology Molecular.;Biology Cell.;Biology Physiology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 341 p.
  • 总页数 341
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号