首页> 外文学位 >Alterations in Nitrogen Cycling Resulting From Oyster Mediated Benthic-Pelagic Coupling.
【24h】

Alterations in Nitrogen Cycling Resulting From Oyster Mediated Benthic-Pelagic Coupling.

机译:牡蛎介导的底栖-古生耦合导致的氮循环变化。

获取原文
获取原文并翻译 | 示例

摘要

Human activities have resulted in an array of stressors to coastal ecosystems. In the context of ecosystem function, two prominent changes have been nutrient enrichment and precipitous declines in the population of the eastern oyster, Crassostrea virginica. Although historically valued as a fishery, oysters provide broader ecological functions, which include filtering water thereby reducing turbidity as they feed and providing habitat for fish and crabs. Despite decades of oyster research, we lack a comprehensive understanding of how oysters influence nitrogen biogeochemistry in estuarine ecosystems. My research directly assessed the role of oysters in enhancing sediment denitrification and the efficacy of oyster reef restoration in alleviating nutrient pollution. I measured net N2 fluxes from five major estuarine habitats: salt marshes, seagrass beds, oyster reefs and intertidal and subtidal flats. Given the current habitat distribution in this study system, denitrification (N 2 production) removed approximately 76% of the estimated watershed nitrogen load. Microcosm experiments were conducted to examine the direct effects of individual oysters on nitrogen dynamics. Results indicated that biodeposit production and excretion shifted sediments from a nitrogen source to a nitrogen sink. Experimental plots of live oysters, oyster shells and mud flats were used to distinguish between the effects of oyster feeding and reef structure on sediment denitrification. The production and accumulation of biotic material accounted for 60% of denitrification from oyster reef sediments while 40% was attributed to the abiotic effects of the reef structure. Fluxes measured from restored intertidal oyster reef sediments demonstrated that oyster reefs prime sediments for enhanced denitrification in response to anthropogenic nitrogen loading; however, the magnitude of this effect is dependent on the habitat setting of the oyster reef. This research identified mechanisms by which oysters alter sediment nitrogen dynamics and enhanced our understanding of oyster reef impacts on ecosystem function. This information is critical for determining where to focus reef restoration and preservation efforts to produce the greatest benefit. Results from my research will inform management strategies, restoration projects and policies aimed at improving water quality and sustaining healthy estuarine ecosystems.
机译:人类活动导致了沿海生态系统的一系列压力。在生态系统功能的背景下,东部牡蛎Crassostrea virginica的养分富集和急剧下降是两个突出的变化。尽管牡蛎在历史上被视为渔业,但它具有更广泛的生态功能,其中包括过滤水,从而降低了它们进食时的浑浊度,并为鱼类和螃蟹提供了栖息地。尽管有数十年的牡蛎研究,但我们对牡蛎如何影响河口生态系统中的氮生物地球化学缺乏全面的了解。我的研究直接评估了牡蛎在增强沉积物反硝化作用中的作用以及牡蛎礁修复在减轻营养物质污染方面的功效。我测量了五个主要河口栖息地的净氮通量:盐沼,海草床,牡蛎礁以及潮间带和潮间带。考虑到该研究系统中当前的栖息地分布,反硝化作用(N 2产生)消除了估计的流域氮负荷的约76%。进行了缩影实验以检查单个牡蛎对氮动力学的直接影响。结果表明,生物沉积物的产生和排泄将沉积物从氮源转移到了氮汇。用活牡蛎,牡蛎壳和滩涂的实验图来区分牡蛎摄食和礁石结构对沉积物反硝化的影响。生物材料的产生和积累占牡蛎礁沉积物中反硝化作用的60%,而40%归因于礁石结构的非生物作用。从恢复的潮间牡蛎礁沉积物中测得的通量表明,牡蛎礁可响应人类活动的氮负荷而使沉积物充实反硝化作用。但是,这种影响的程度取决于牡蛎礁的栖息地设置。这项研究确定了牡蛎改变沉积物氮动态的机制,并增强了我们对牡蛎礁对生态系统功能影响的理解。这些信息对于确定将礁石的恢复和保存工作集中到何处以产生最大的收益至关重要。我的研究结果将为旨在改善水质和维持健康的河口生态系统的管理策略,修复项目和政策提供信息。

著录项

  • 作者

    Smyth, Ashley Rebecca.;

  • 作者单位

    The University of North Carolina at Chapel Hill.;

  • 授予单位 The University of North Carolina at Chapel Hill.;
  • 学科 Biology Ecology.;Biogeochemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号