首页> 外文学位 >Blinking correlation in nanocrystal quantum dots probed with novel laser scanning confocal microscopy methods.
【24h】

Blinking correlation in nanocrystal quantum dots probed with novel laser scanning confocal microscopy methods.

机译:新型激光扫描共聚焦显微镜探测纳米晶体量子点的闪烁相关性。

获取原文
获取原文并翻译 | 示例

摘要

Semiconductor quantum dots have a vast array of applications: as fluorescent labels in biological systems, as physical or chemical sensors, as components in photovoltaic technology, and in display devices. An attribute of nearly every quantum dot is its blinking, or fluorescence intermittency, which tends to be a disadvantage in most applications. Despite the fact that blinking has been a nearly universal phenomenon among all types of fluorescent constructs, it is more prevalent in quantum dots than in traditional fluorophores. Furthermore, no unanimously accepted model of quantum dot blinking yet exists.;The work encompassed by this dissertation began with an in-depth study of molecular motor protein dynamics in a variety of environments using two specially developed techniques, both of which feature applicability to live cell systems. Parked-beam confocal microscopy was utilized to increase temporal resolution of molecular motor motion dynamics by an order of magnitude over other popular methods. The second technique, fast-scanning confocal microscopy (FSCM), was used for long range observation of motor proteins. While using FSCM on motor protein assays, we discovered an unusual phenomenon. Single quantum dots seemingly communicated with neighboring quantum dots, indicated by a distinct correlation in their blinking patterns.;In order to explain this novel correlation phenomenon, the majority of blinking models developed thus far would suggest a dipole-dipole interaction or a Coulomb interaction between singly charged quantum dots. However, our results indicate that the interaction energy is higher than supported by current models, thereby prompting a renewed examination. We propose that the blinking correlation we observed is due to a Coulomb interaction on the order of 3-4 elementary charges per quantum dot and that multiple charging of individual quantum dots may be required to plunge them into a non-emissive state. As a result of charging, charge carriers are displaced into a wide distribution of trap sites in the surrounding matrix, resulting in the expected power-law probability distribution of off times ubiquitous in quantum dots. Our discovery also implies that quantum dot blinking can be controlled, advocating the creation of switchable nanoscale emitters.
机译:半导体量子点具有广泛的应用:作为生物系统中的荧光标记,作为物理或化学传感器,作为光伏技术的组件以及在显示设备中。几乎每个量子点的一个属性是其闪烁或荧光间歇性,这在大多数应用中往往是不利的。尽管眨眼已成为所有类型的荧光结构中几乎普遍的现象,但它在量子点中比在传统的荧光团中更普遍。此外,尚不存在一致接受的量子点闪烁模型。本论文涵盖的工作始于使用两种专门开发的技术深入研究各种环境中的分子运动蛋白动力学,这两种技术均具有生命适用性。细胞系统。与其他流行方法相比,利用驻束共聚焦显微镜将分子运动动力学的时间分辨率提高了一个数量级。第二种技术,快速扫描共聚焦显微镜(FSCM),用于运动蛋白的远距离观察。在运动蛋白测定中使用FSCM时,我们发现了一个不寻常的现象。单量子点看似与相邻量子点连通,由它们的闪烁模式具有明显的相关性表示;为了解释这种新颖的相关现象,到目前为止开发的大多数闪烁模型都暗示了偶极-偶极相互作用或库仑相互作用单电荷量子点。但是,我们的结果表明相互作用能比当前模型支持的要高,从而促使重新进行检查。我们提出,我们观察到的闪烁相关性是由于库仑相互作用(每个量子点3-4个基本电荷的数量级)造成的,并且可能需要单个量子点的多个电荷才能使其陷入非发射态。作为充电的结果,电荷载流子被转移到周围矩阵中陷阱位置的广泛分布中,从而导致量子点中普遍存在的截止时间的预期幂律概率分布。我们的发现还暗示可以控制量子点闪烁,提倡创建可切换的纳米级发射器。

著录项

  • 作者

    Hefti, Ryan Alf.;

  • 作者单位

    The University of North Carolina at Charlotte.;

  • 授予单位 The University of North Carolina at Charlotte.;
  • 学科 Nanoscience.;Physics Condensed Matter.;Physics General.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号