首页> 外文学位 >A resonant ultrasound spectroscopy study of novel materials: Nanocrystals, quasicrystals, and hydrogen-storage alloys.
【24h】

A resonant ultrasound spectroscopy study of novel materials: Nanocrystals, quasicrystals, and hydrogen-storage alloys.

机译:共振超声光谱研究新型材料:纳米晶体,准晶体和储氢合金。

获取原文
获取原文并翻译 | 示例

摘要

The experimental technique Resonant Ultrasound Spectroscopy (RUS) has been used to study the elastic properties and ultrasonic loss of several novel materials: a nanocrystalline form of palladium, a quasicrystal, a Laves-phase C15 cubic material that undergoes a Martensitic phase transition when cooled, and a random alloy. Resonant Ultrasound Spectroscopy (RUS) is an ideal technique for the determination of the elastic properties of these types of materials since RUS is non-destructive and can work with very small sample sizes.; Nanocrystalline materials have average grain sizes of 100 nm or less. The reduced grain size leads to physical properties that are different than the properties of the coarser grained forms of the same chemical composition. The elastic constants of nanocrystalline palladium (nc-Pd) and silicon-stabilized nanocrystalline palladium (nc-PdSi) were measured in the temperature range 4-300K.; Quasicrystals are materials with an aperiodic structure, but which display perfect long-range order. RUS was used to measure the elastic constants of an icosahedral Ti39.5Zr39.5Ni21 quasicrystal over the temperature range 3-292K.; Laves-phase alloys are the largest subgroup of the topologically close-packed materials, and are characterized by low densities and high melting points. The Laves-phase C15 (cubic) materials can absorb hydrogen. The temperature dependence of the elastic constants of polycrystalline ZrV2 was measured in the temperature range 100-300 K using the RUS technique.; Random alloys are metallic compounds which do not exhibit chemical ordering of their component atoms; any lattice position may be inhabited by any of the chemical species comprising the compound. The random alloy discussed in this study, Ta0.33V0.67, can absorb considerable amounts of hydrogen and the disordered nature of the local atomic environments leads to differences in the elastic properties. In this study, the temperature dependence and ultrasonic loss for a random alloy with the same chemical composition as the Laves-phase C15 TaV2 compound was measured in the temperature range 5-300 K using the RUS technique, and compared to an earlier study of TaV2.
机译:实验技术共振超声光谱(RUS)已用于研究几种新型材料的弹性和超声损耗:纳米晶态的钯,准晶,拉夫斯相C15立方材料,冷却后会经历马氏体相变,和随机合金。共振超声光谱(RUS)是确定这些类型材料弹性特性的理想技术,因为RUS是无损的,并且可以处理非常小的样品量。纳米晶体材料的平均晶粒尺寸为100 nm或更小。减小的晶粒尺寸导致物理性质不同于具有相同化学组成的较粗粒形式的性质。在4-300K的温度范围内测量纳米晶钯(nc-Pd)和硅稳定的纳米晶钯(nc-PdSi)的弹性常数。准晶体是具有非周期性结构的材料,但显示出完美的长程有序。 RUS被用来测量在3-292K温度范围内的二十面体Ti39.5Zr39.5Ni21准晶体的弹性常数。 Laves相合金是拓扑紧密堆积的材料的最大子类,并且具有低密度和高熔点的特征。 Laves相C15(立方)材料可以吸收氢。使用RUS技术在100-300K的温度范围内测量了多晶ZrV2的弹性常数的温度依赖性。无规合金是金属化合物,不会表现出其组成原子的化学顺序。包含该化合物的任何化学物质都可能占据任何晶格位置。在这项研究中讨论的无规合金Ta0.33V0.67可以吸收大量的氢,并且局部原子环境的无序性质导致弹性特性上的差异。在这项研究中,使用RUS技术在5-300 K的温度范围内测量了具有与Laves相C15 TaV2化合物相同化学成分的无规合金的温度依赖性和超声损失,并将其与TaV2的早期研究进行了比较。 。

著录项

  • 作者

    Agosta, Dennis Salvatore.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号