首页> 外文学位 >Transient electrothermal modeling of digital and radio frequency circuits.
【24h】

Transient electrothermal modeling of digital and radio frequency circuits.

机译:数字和射频电路的瞬态电热建模。

获取原文
获取原文并翻译 | 示例

摘要

Simulator technology for the high dynamic range, electrothermal modeling of electronic circuits is developed and applied to digital, radio frequency (RF) and microwave circuits. High-dynamic range is achieved using a combination of device models based on state-variables and utilizing automatic differentiation, precise error determination, and time step control. State-variables enable simpler and faster development of models less prone to implementation error. Automatic differentiation yields error free evaluation of the derivatives of circuit quantities with respect to each other and so removes any uncertainty in establishing the precise circuit condition. In transient analysis precise error determination and time step control is achieved by comparing two nonlinear solutions at each time point. A two-tone test of an X-band GaAs MESFET MMIC (Gallium Arsenide, Metal Semiconductor Field Effect Transistor Monolithic Microwave Integrated Circuit) was used to investigate and validate dynamic range. In the determination of the third-order intermodulation product in a two tone test a dynamic range of 165 dB was demonstrated. This high dynamic range was achieved through precise evaluation of the derivatives, accurate time step control and the circuit state, which is important in long electrothermal transient simulations. This minimization of accumulated numerical error is especially important in long electrothermal transient simulations. The 3D compact thermal models of the X-band MMIC LNA developed were verified with thermal images of the MMIC LNA taken with an infra red camera. The thermal models predict the temperature rise on various spots of the MMIC with less than 5% error. To perform an coupled electrothermal simulation at RF frequencies, a linear RC network based thermal macromodel of the MMIC was developed. The high dynamic range capability helped detect the small changes in the output voltage of the MMIC, at elevated temperatures. This thermal macromodel was applied to electrothermal simulations of an 3D thermal test chip designed with a 0.18 mum Fully Depleted Silicon on Insulator (FDSOI) MOSFET (Metal Oxide Semiconductor Field Effect Transistor) technology. An experimentally validated state-variable based electrothermal model of a 0.18 mum FDSOI MOSFET is implemented.
机译:开发了用于高动态范围的模拟器技术,对电子电路进行电热建模,并将其应用于数字,射频(RF)和微波电路。使用基于状态变量的设备模型组合并利用自动微分,精确的误差确定和时间步长控制来实现高动态范围。状态变量可使模型更简单,更快速地开发,并且不易出现实现错误。自动微分产生电路数量的导数相对于彼此的无误差评估,因此消除了建立精确电路条件时的任何不确定性。在瞬态分析中,通过在每个时间点比较两个非线性解决方案,可以实现精确的误差确定和时步控制。使用X波段GaAs MESFET MMIC(砷化镓,金属半导体场效应晶体管单片微波集成电路)的两音测试来研究和验证动态范围。在双音测试中确定三阶互调产物时,动态范围为165 dB。通过对导数进行精确评估,精确的时间步长控制和电路状态来实现这一高动态范围,这在长时间电热瞬态仿真中很重要。在长时间电热瞬态仿真中,将累积的数值误差最小化尤其重要。 X波段MMIC LNA的3D紧凑型热模型通过红外相机拍摄的MMIC LNA的热图像进行了验证。热模型预测MMIC各个位置的温度升高,误差小于5%。为了在RF频率上执行耦合电热模拟,开发了基于线性RC网络的MMIC热宏模型。高动态范围功能有助于在高温下检测MMIC输出电压的微小变化。该热宏模型被应用于3D热测试芯片的电热模拟,该芯片采用0.18微米绝缘体上的全耗尽硅(FDSOI)MOSFET(金属氧化物半导体场效应晶体管)技术设计。实现了基于实验验证的基于状态变量的0.18μmFDSOI MOSFET的电热模型。

著录项

  • 作者

    Luniya, Sonali R.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 431 p.
  • 总页数 431
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号