首页> 外文学位 >Development of Nanowire Structures on 2D and 3D Substrates for Pool Boiling Heat Transfer Enhancement.
【24h】

Development of Nanowire Structures on 2D and 3D Substrates for Pool Boiling Heat Transfer Enhancement.

机译:在2D和3D基板上开发纳米线结构以增强池沸腾传热。

获取原文
获取原文并翻译 | 示例

摘要

Boiling is a common mechanism for liquid-vapor phase transition and is widely exploited in power generation, refrigeration and many other systems. The efficacy of boiling heat transfer is characterized by two parameters: (a) heat transfer coefficient (HTC) or the thermal conductance; (b) the critical heat flux (CHF). Increasing the CHF and the HTC has significant impacts on system-level energy efficiency, safety and cost. As the surface modification at nano-scale has proven to be an effective approach to improve pool boiling heat transfer, the enhancement due to combination of nanomaterials with micro-scale structures on boiling heat transfer is an area of current interest. In this study, metallic- and semiconductor- material based nanowire structures were fabricated and studied for boiling enhancement. A new technique is developed to directly grow Cu nanowire (CuNW) on Si substrate with electro-chemical deposition, and to produce height-controlled hydrophilic nanowired surfaces. Using a two-step electroless etching process, silicon nanowire (SiNW) have been selectively fabricated on top, bottom, and sidewall surfaces of silicon microchannels. An array of the SiNW coated microchannels functioned as a heat sink and was investigated for its pool boiling performance with water. This microchannel heat sink yielded superior boiling performance compared to a sample substrate with only microchannels and a plain substrate with nanowires. The enhancement was associated with the area covered by SiNWs. The sidewalls with SiNWs greatly affected bubble dynamics, resulting in a significant performance enhancement. The maximum heat flux of the microchannel with SiNW on all surfaces was improved by 150% over the microchannel-only heat sink and by more than 400% over a plain silicon substrate. These results provide a viable solution to meet the demands for dissipating a high heat transfer rate in a compact space, with additional insight gained into the boiling mechanism for the microchannel heat sinks with nanostructures.
机译:沸腾是液体-蒸汽相变的一种常见机制,在发电,制冷和许多其他系统中得到了广泛的利用。沸腾传热的功效由两个参数表征:(a)传热系数(HTC)或热导率; (b)临界热通量(CHF)。增加CHF和HTC对系统级能源效率,安全性和成本有重大影响。由于已经证明在纳米尺度上进行表面改性是改善池沸腾传热的有效方法,因此由于纳米材料与微观结构在沸腾传热上的结合而引起的增强是当前关注的领域。在这项研究中,制造了基于金属和半导体材料的纳米线结构,并进行了沸腾增强研究。开发了一种新技术,可通过电化学沉积在Si基板上直接生长Cu纳米线(CuNW),并产生高度可控的亲水性纳米线表面。使用两步化学蚀刻工艺,已在硅微通道的顶部,底部和侧壁表面选择性地制造了硅纳米线(SiNW)。涂有SiNW的微通道阵列起着散热器的作用,并对其在水中的池沸腾性能进行了研究。与仅具有微通道的样品基板和具有纳米线的普通基板相比,该微通道散热器产生了卓越的沸腾性能。增强与SiNW所覆盖的区域有关。具有SiNW的侧壁极大地影响了气泡动力学,从而显着提高了性能。与仅使用微通道的散热器相比,在所有表面上均具有SiNW的微通道的最大热通量提高了150%,而相对于纯硅基板而言则提高了400%以上。这些结果提供了一种可行的解决方案,可以满足在紧凑的空间中散发高传热速率的需求,并且对具有纳米结构的微通道散热器的沸腾机理有了更多的了解。

著录项

  • 作者

    Yao, Zhonghua.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Engineering General.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号