首页> 美国卫生研究院文献>Scientific Reports >Independent and collective roles of surface structures at different length scales on pool boiling heat transfer
【2h】

Independent and collective roles of surface structures at different length scales on pool boiling heat transfer

机译:池沸腾传热中不同长度尺度表面结构的独立和集体作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spherical Cu nanocavity surfaces are synthesized to examine the individual role of contact angles in connecting lateral Rayleigh-Taylor wavelength to vertical Kevin-Helmholtz wavelength on hydrodynamic instability for the onset of pool boiling Critical Heat Flux (CHF). Solid and porous Cu pillar surfaces are sintered to investigate the individual role of pillar structure pitch at millimeter scale, named as module wavelength, on hydrodynamic instability at CHF. Last, spherical Cu nanocavities are coated on the porous Cu pillars to create a multiscale Cu structure, which is studied to examine the collective role and relative significance of contact angles and module wavelength on hydrodynamic instability at CHF, and the results indicate that module wavelength plays the dominant role on hydrodynamic instability at CHF when the height of surface structures is equal or above ¼ Kelvin-Helmholtz wavelength. Pool boiling Heat Transfer Coefficient (HTC) enhancements on spherical Cu nanocavity surfaces, solid and porous Cu pillar surfaces, and the integrated multiscale structure have been investigated, too. The experimental results reveal that the nanostructures and porous pillar structures can be combined together to achieve even higher enhancement of HTC than that of individual structures.
机译:合成球形Cu纳米腔表面,以检查接触角在将横向Rayleigh-Taylor波长与垂直Kevin-Helmholtz波长相关联时,对于水合沸腾临界热通量(CHF)的流体动力学不稳定性的作用。烧结固态和多孔的Cu柱表面,以研究毫米级柱结构间距(称为模块波长)对CHF时流体动力不稳定性的单独作用。最后,在多孔铜柱上包覆球形的铜纳米腔,形成多尺度的铜结构,研究了接触角和组件波长对CHF流体动力学不稳定性的集体作用和相对重要性,结果表明组件波长起着作用。当表面结构的高度等于或大于1/4 Kelvin-Helmholtz波长时,在CHF的流体动力学不稳定性中起主要作用。还研究了球形Cu纳米腔表面,固态和多孔Cu柱表面以及集成多尺度结构上池沸腾传热系数(HTC)的提高。实验结果表明,纳米结构和多孔柱结构可以结合在一起以实现比单个结构更高的HTC增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号