首页> 外文学位 >Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors.
【24h】

Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors.

机译:碲化镉锌基核探测器的晶体生长,表征和制造。

获取原文
获取原文并翻译 | 示例

摘要

In today's world, nuclear radiation is seeing more and more use by humanity as time goes on. Nuclear power plants are being built to supply humanity's energy needs, nuclear medical imaging is becoming more popular for diagnosing cancer and other diseases, and control of weapons-grade nuclear materials is becoming more and more important for national security. All of these needs require high-performance nuclear radiation detectors which can accurately measure the type and amount of radiation being used. However, most current radiation detection materials available commercially require extensive cooling, or simply do not function adequately for high-energy gamma-ray emitting nuclear materials such as uranium and plutonium.;One of the most promising semiconductor materials being considered to create a convenient, field-deployable nuclear detector is cadmium zinc telluride (CdZnTe, or CZT). CZT is a ternary semiconductor compound which can detect high-energy gamma-rays at room temperature. It offers high resistivity (≥ 1010 Ω-cm), a high band gap (1.55 eV), and good electron transport properties, all of which are required for a nuclear radiation detector. However, one significant issue with CZT is that there is considerable difficulty in growing large, homogeneous, defect-free single crystals of CZT. This significantly increases the cost of producing CZT detectors, making CZT less than ideal for mass-production. Furthermore, CZT suffers from poor hole transport properties, which creates significant problems when using it as a high-energy gamma-ray detector.;In this dissertation, a comprehensive investigation is undertaken using a successful growth method for CZT developed at the University of South Carolina. This method, called the solvent-growth technique, reduces the complexity required to grow detector-grade CZT single crystals. It utilizes a lower growth temperature than traditional growth methods by using Te as a solvent, while maintaining the advantages of crystal homogeneity of other modern CZT growth techniques. However, information about crystals grown with this method has not been undertaken in a comprehensive way thus far.;In this work, Cd0.9Zn0.1Te is grown using the solvent-growth method using zone-refined precursor materials loaded into carbon-coated quartz ampoules. Ampoules were sealed and crystal growth was performed using crystal growth furnaces built in-house at USC. Ingots 1-2" in diameter produced using the solvent-growth method were wafered, processed, and polished for characterization. Semiconductor characterization is performed on the CZT crystals to determine band gap, elemental stoichiometry, and electrical resistivity. Surface modification studies were undertaken to determine if surface leakage current can be reduced using sulfur passivation. XPS studies were used to confirm the effects of passivation on the surface states, and electrical characterization was performed to measure the effects of passivation on the CZT crystals. Deep-level and surface defect studies were conducted on the CZT samples to determine the type and intensity of defects present in the crystals which may affect detector performance. Finally, nuclear detectors were fabricated and characterized using analog and digital radiation detection systems to measure their performance and energy resolution.
机译:在当今世界,随着时间的流逝,人类越来越多地使用核辐射。正在建设核电厂来满足人类的能源需求,核医学成像在诊断癌症和其他疾病方面正变得越来越普及,武器级核材料的控制对国家安全也越来越重要。所有这些需求都需要高性能的核辐射探测器,它们可以准确地测量所用辐射的类型和数量。但是,目前市场上可买到的大多数辐射检测材料都需要大量冷却,或者仅仅不能充分发挥高能发射伽马射线的核材料(如铀和p)的作用;被认为是制造方便的最有希望的半导体材料之一,可现场部署的核探测器是碲化镉锌(CdZnTe或CZT)。 CZT是一种三元半导体化合物,可以在室温下检测高能伽马射线。它提供了高电阻率(≥1010Ω-cm),高带隙(1.55 eV)和良好的电子传输性能,这些都是核辐射探测器所需的。但是,CZT的一个重要问题是,要生长出大型,均质,无缺陷的CZT单晶存在相当大的困难。这大大增加了CZT检测器的生产成本,使得CZT不能理想地用于批量生产。此外,CZT的空穴传输性能差,在将其用作高能伽马射线探测器时会产生严重的问题。本论文采用南大学开发的成功的CZT生长方法进行了全面研究卡罗来纳州。这种称为溶剂生长技术的方法降低了生长检测器级CZT单晶所需的复杂性。通过使用Te作为溶剂,与传统的生长方法相比,它利用较低的生长温度,同时保持了其他现代CZT生长技术的晶体均质性优势。然而,到目前为止,尚未全面了解用这种方法生长的晶体的信息。;在这项工作中,Cd0.9Zn0.1Te是使用溶剂生长法生长的,方法是将区域精制的前体材料加载到碳包覆的石英中安瓿瓶。密封安瓿瓶,并使用USC内部建造的晶体生长炉进行晶体生长。对使用溶剂生长法生产的直径为1-2“的锭进行晶圆处理,加工和抛光以进行表征。对CZT晶体进行半导体表征,以确定带隙,元素化学计量和电阻率。进行了表面改性研究,确定是否可以通过硫钝化来降低表面泄漏电流XPS研究用于确定钝化对表面态的影响,并进行电学表征以测量钝化对CZT晶体的影响。对CZT样品进行了测试,以确定可能影响探测器性能的晶体中缺陷的类型和强度,最后,使用模拟和数字辐射探测系统制造并表征了核探测器,以测量其性能和能量分辨率。

著录项

  • 作者

    Krishna, Ramesh M.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号