首页> 外文学位 >Fundamental Studies of Assembly and Mechanical Properties of Lipid Bilayer Membranes and Unilamellar Vesicles.
【24h】

Fundamental Studies of Assembly and Mechanical Properties of Lipid Bilayer Membranes and Unilamellar Vesicles.

机译:脂质双层膜和单层囊泡的组装和力学性能的基础研究。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation work focuses on: (i) obtaining a phospholipid bilayer membrane (LBM)/conducting electrode system with low defect density and optimized rigidity; (ii) investigating vesicle stability and mechanical properties. LBM is a simplified yet representative cell membrane model. LBMs assembled on conductive surfaces can probe protein-LBM interactions activities electrochemically. Sterically stabilized vesicles could be used as cell models or for drug delivery.;The main challenges for LBM assembly on gold are vesicles do not spontaneously rupture to form LBMs on gold and the roughness of the gold substrate has considerable influence on molecular film defect density. In this study, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles were functionalized with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine- N-poly(ethylene glycol)-2000-N-[3-(2-pyridyldithio)propionate] (DSPE-PEG-PDP) to yield stable LBMs on gold without surface modification. A template-stripping method was used to obtain atomically flat and pristine gold surfaces. The critical force to initiate vesicle rupture decreases with increasing DSPE-PEG-PDP concentration, indicating that gold-thiolate bonding between DSPE-PEG-PDP and gold substrates promotes LBM formation.;Mechanical properties of LBMs and vesicles were investigated as a function of DSPE-PEG-PDP concentration via Atomic Force Microscopy. The elastic moduli of LBMs were determined with DSPE-PEG-PDP concentration ranging from 0mol% to 24mol% and were found to depend on PEG chain conformation. Incorporating DSPE-PEG-PDP molecules with PEG in mushroom conformation results in a decrease of LBM rigidity, while incorporating PEG in brush conformation leads to LBM stiffening. Contrarily, mechanical properties of functionalized vesicles did not vary significantly by varying DSPE-PEG-PDP concentration. LBM with tunable rigidity by adjusting DSPE-PEG-PDP concentration provides a versatile cell membrane model for studying protein or peptide activities. The study of vesicle rupture mechanics and mechanical properties provide a means of understanding triggered release of internal payload from vesicular structures.;POPC vesicles were also deposited on graphene; a transparent and highly conductive electrode. A combination method of diffusion bonding and template-stripping was used to prepare metal surfaces for graphene growth without concerns of outgassing, thermal and chemical compatibility. Continuous LBM formed on graphene-single crystal Cu, while tubular features with 120°C patterns formed on graphene-Cu foil, indicating the step edge of Cu below graphene may also guide the assembly of tubular LBM features on graphene.
机译:本论文的工作重点是:(i)获得具有低缺陷密度和最佳刚性的磷脂双层膜(LBM)/导电电极系统; (ii)研究囊泡的稳定性和力学性能。 LBM是简化但具有代表性的细胞膜模型。组装在导电表面上的LBM可以电化学探测蛋白质-LBM相互作用的活性。立体稳定的囊泡可以用作细胞模型或用于药物递送。;在金上组装LBM的主要挑战是,囊泡不会自发破裂而在金上形成LBM,并且金底物的粗糙度对分子膜缺陷密度有很大影响。在这项研究中,将1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸胆碱(POPC)囊泡用1,2-二硬脂基-sn-甘油-3-磷酸乙醇胺-N-聚(乙二醇)-2000- N- [3-(2-吡啶基二硫代)丙酸酯](DSPE-PEG-PDP),可在金上生成稳定的LBM,而无需进行表面修饰。使用模板剥离法获得原子平坦且原始的金表面。随着DSPE-PEG-PDP浓度的增加,引发囊泡破裂的临界力降低,表明DSPE-PEG-PDP和金基质之间的硫醇金键促进了LBM的形成。;研究了LBMs和囊泡的机械性能与DSPE的关系通过原子力显微镜检查-PEG-PDP浓度。 LBM的弹性模量由DSPE-PEG-PDP浓度在0mol%至24mol%范围内确定,并取决于PEG链构象。在蘑菇构象中将DSPE-PEG-PDP分子与PEG结合会导致LBM刚度降低,而在刷子构象中将PEG引入会导致LBM变硬。相反,通过改变DSPE-PEG-PDP浓度,功能化囊泡的机械性能没有明显变化。通过调节DSPE-PEG-PDP浓度可调节LBM的刚性,为研究蛋白质或肽的活性提供了一种通用的细胞膜模型。对囊泡破裂力学和力学性能的研究为理解内部有效载荷从囊泡结构中释放释放提供了一种手段。POPC囊泡也沉积在石墨烯上;透明且高度导电的电极。使用扩散结合和模板剥离的组合方法来制备用于石墨烯生长的金属表面,而无需担心脱气,热和化学相容性。在石墨烯-单晶铜上形成连续的LBM,而在石墨烯-铜箔上形成具有120°C图案的管状特征,表明Cu在石墨烯下方的台阶边缘也可以引导管状LBM特征在石墨烯上的组装。

著录项

  • 作者

    Wang, Xi.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Biophysics General.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号