首页> 外文学位 >Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas.
【24h】

Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas.

机译:二维电子气体中电流驱动的自旋螺旋的多普勒测速。

获取原文
获取原文并翻译 | 示例

摘要

Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices.;This thesis presents the demonstration and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is strongly suppressed by electron-electron interactions, leading to remarkable resistance to diffusive spreading of the drifting pulse of spin polarization. Finally, we show that spin helices continue propagate at the same speed as the Fermi sea even when the electron drift velocity exceeds the Fermi velocity of 107 cm s-1.;We also use this phase-resolved Doppler velocimetry technique to perform the first simultaneous measurements of drift and diffusion of electron-hole packets in the same two-dimensional electron gas. The results that we obtain strongly violate the picture of electron-hole transport that is presented in the classic textbook treatments of ambipolar dynamics. We find that the rates of transport are controlled almost entirely by the intrinsic frictional force exerted between electrons and holes, rather than the interaction of carriers with phonons or impurities. From the experimental data we obtain the first measurement of the "Coulomb drag" friction between electrons and holes coexisting in the same two-dimensional layer. Moreover, we show that the frictional force thus obtained is in quantitative agreement with theoretically predicted values, which follow entirely from electron density, temperature and fundamental constants, i.e. no adjustable parameters. The understanding of ambipolar transport that we have achieved is an essential prerequisite to the design of those spintronic devices in which spin current is carried by the drift of polarized electrons and holes.
机译:半导体中的自旋为通向自旋电子学的发展提供了一条途径。自旋逻辑器件的吸引力在于,自旋电流甚至在时间反转对称下,产生与电场的非耗散耦合。为了充分利用自旋电流的节能潜力,必须能够对其进行控制。尽管最近在自旋晶体管配置中进行电子门控制的演示显示出了很大的希望,但在室温下运行仍然遥遥无期。进一步的进展需要对自旋极化的传播有更深入的了解,尤其是在用于设备的高迁移率半导体中。本论文介绍了一种强大的新型光学技术多普勒自旋测速技术的演示和应用,该技术可以探测自旋极化在皮秒级的1 nm级别。我们讨论了使用该技术测量高迁移率n-GaAs量子阱中自旋螺旋的运动随温度,面内电场和光致自旋极化幅度的函数的实验。我们发现自旋螺旋速度随波矢的变化而变化,并且在产生最大自旋寿命的波矢处为零。这种观察是惊人的,但是可以用我们已经开发的随机游走模型来解释。我们发现,在接近150 K的温度下,传播的自旋密度波中的相干自旋进动将消失。这一发现对于理解为何到目前为止基于旋转电流的电门控制的器件在室温下运行仍然难以捉摸。我们报告说,在所有温度下,电子自旋极化与高迁移率电子海共同传播,即使这需要自旋密度与光注入电子密度的异常分离形式。此外,尽管自旋包与二维电子气共同传播,但是自旋扩散被电子-电子相互作用强烈抑制,导致对自旋极化的漂移脉冲的扩散扩展具有显着的抵抗性。最后,我们证明,即使电子漂移速度超过107厘米s-1的费米速度,自旋螺旋仍以与费米海相同的速度继续传播。我们还使用这种相位分辨多普勒测速技术进行了首次同步测量在相同的二维电子气中电子空穴包的漂移和扩散。我们获得的结果强烈违反了经典的教科书中关于双极动力学的电子空穴传输的图景。我们发现,传输速率几乎完全由施加在电子和空穴之间的固有摩擦力控制,而不是由载流子与声子或杂质的相互作用控制。从实验数据中,我们获得了在同一二维层中共存的电子与空穴之间的“库仑阻力”摩擦的首次测量值。而且,我们表明由此获得的摩擦力与理论上的预测值在数量上是一致的,该理论上的预测值完全来自电子密度,温度和基本常数,即没有可调节的参数。我们已经实现的对双极传输的理解,是那些自旋电子器件的设计必不可少的前提,在这些自旋电子器件中,自旋电流是由极化电子和空穴的漂移所携带的。

著录项

  • 作者

    Yang, Luyi.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Physics General.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 92 p.
  • 总页数 92
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号