首页> 外文学位 >Tunable All Reflective Spatial Heterodyne Spectroscopy, A Technique For High Resolving Power Observation OI Defused Emission Line Sources.
【24h】

Tunable All Reflective Spatial Heterodyne Spectroscopy, A Technique For High Resolving Power Observation OI Defused Emission Line Sources.

机译:可调谐全反射空间外差光谱法,一种用于高分辨能力观察OI散射发射线源的技术。

获取原文
获取原文并翻译 | 示例

摘要

The solar system presents a challenge to spectroscopic observers, because it is an astrophysically low energy environment populated with often angularly extended targets (e.g, interplanetary medium, comets, planetary upper atmospheres, and planet and satellite near space environments). Spectroscopy is a proven tool for determining compositional and other properties of remote objects. Narrow band imaging and low resolving spectroscopic measurements provide information about composition, photochemical evolution, energy distribution and density. The extension to high resolving power provides further access to temperature, velocity, isotopic ratios, separation of blended sources, and opacity effects. The drawback of high-resolution spectroscopy comes from the instrumental limitations of lower throughput, the necessity of small entrance apertures, sensitivity, field of view, and large physical instrumental size. These limitations quickly become definitive for faint and/or extended targets and for spacecraft encounters.;An emerging technique with promise for the study of faint, extended sources at high resolving power is the all-reflective form of the Spatial Heterodyne Spectrometer (SHS). SHS instruments are compact and naturally possess both high étendue and high resolving power. To achieve similar spectral grasp, grating spectrometers require big telescopes. SHS is a common-path beam Fourier transform interferometer that produces Fizeau fringe pattern for all other wavelengths except the tuned wavelength. Compared to similar Fourier transform Spectrometers (FTS), SHS has considerably relaxed optical tolerances that make it easier to use in the visible and UV spectral ranges. The large étendue of SHS instruments makes them ideal for observations of extended, low surface brightness, isolated emission line sources, while their intrinsically high spectral resolution enables the study of the dynamical and spectral characteristics described above. SHS also combines very high (R >105) spectral resolution and large étendue in a small package that is compatible with space mission requirements that have not been met with any other SHS technologies to date.;One limitation of current SHS designs is the lack of a broadband capability. To address this gap we are developing a form of the reflective SHS that is tunable over a wide range of wavelength (TSHS). In this work, we describe the primary TSHS concept in a mathematical approach, describe the variations under development, and discuss their scientific potential for the exploration of faint extended targets. An in-development laboratory prototype of a second generation TSHS in which we address several technical limitations noted in earlier studies is shown.;This document contains three chapters. Chapter 1, is an overview of the scientific need for a new instrument that we are introducing here and it is an summery of previous papers. Chapter 2 contains new work developing the mathematical frame work for the all reflective SHS. The results presented in this chapter have not been reported in any related literature before and will be presented in an upcoming conference paper. Chapter 3 contains a laboratory report for construction of a tunable all reflective SHS.
机译:太阳系给光谱观察者带来了挑战,因为它是一个天体物理量低的能量环境,通常有成角度扩展的目标(例如,行星际介质,彗星,行星大气层以及行星和卫星附近的太空环境)。光谱学是用于确定远程物体的成分和其他属性的行之有效的工具。窄带成像和低分辨率光谱测量提供有关组成,光化学演化,能量分布和密度的信息。高分辨力的扩展提供了进一步获得温度,速度,同位素比,混合源分离和不透明效果的途径。高分辨率光谱学的缺点来自仪器的局限性,即通量较低,必须有小入射孔,灵敏度,视野和较大的物理仪器尺寸。这些局限性很快就成为微弱和/或扩展目标以及航天器遭遇的确定性。空间外差光谱仪(SHS)的全反射形式是一种新兴的技术,有望以高分辨力研究微弱的扩展源。 SHS仪器体积小巧,自然具有高柔韧性和高分辨力。为了获得类似的光谱掌握,光栅光谱仪需要大型望远镜。 SHS是一种共径光束傅立叶变换干涉仪,可为除调谐波长以外的所有其他波长产生Fizeau条纹图案。与类似的傅立叶变换光谱仪(FTS)相比,SHS的光学容差相当宽松,从而使其更易于在可见光和紫外线光谱范围内使用。 SHS仪器的大样本量使它们成为观察扩展的,低表面亮度,孤立的发射线源的理想选择,而其固有的高光谱分辨率使得能够研究上述动力学和光谱特征。 SHS还以非常小的封装结合了非常高的(R> 105)光谱分辨率和大的爱德华度,与迄今为止任何其他SHS技术都无法满足的太空任务要求兼容;;目前SHS设计的一个局限性是缺乏宽带能力。为了解决这一差距,我们正在开发一种反射型SHS,可以在很宽的波长范围(TSHS)上进行调节。在这项工作中,我们以数学方法描述了主要的TSHS概念,描述了正在开发的变化,并讨论了其探索微弱扩展目标的科学潜力。显示了第二代TSHS的开发中实验室原型,其中我们解决了先前研究中提到的几个技术局限性。该文档包含三章。第1章概述了我们在这里介绍的新仪器的科学需求,这是以前论文的总结。第2章包含了为所有反射性SHS开发数学框架的新工作。本章中介绍的结果之前尚未在任何相关文献中进行报道,并将在以后的会议论文中进行介绍。第3章包含构建可调全反射SHS的实验室报告。

著录项

  • 作者

    Hosseini, Seyedeh Sona.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Physics Astronomy and Astrophysics.
  • 学位 M.S.
  • 年度 2013
  • 页码 75 p.
  • 总页数 75
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号