首页> 外文学位 >Dynamic regulation of histone lysine methylation via the ubiquitin-proteasome system.
【24h】

Dynamic regulation of histone lysine methylation via the ubiquitin-proteasome system.

机译:通过泛素-蛋白酶体系统动态调节组蛋白赖氨酸甲基化。

获取原文
获取原文并翻译 | 示例

摘要

Lysine methylation is an important post-translational modification found on histones that is added and removed by histone lysine methyltransferases and demethylases, respectively. Lysine methylation occurs in a specific and well-regulated manner, and plays key roles in regulating important biological processes such as transcription, DNA damage and cell cycle. Regulation of the protein abundance of these methylation enzymes particularly by the ubiquitin-proteasome system has emerged as a key mechanism by which the histone methylation status of the cell can be regulated, allowing cells to respond rapidly to specific developmental and environmental cues. In my thesis, I focus on two histone lysine demethylases, KDM4A and PHF8, both of which appear to be regulated by E3 ligases; this regulation impacts their function in the cell. Chapter 2 shows that KDM4A is targeted for proteasomal degradation by the SCF FBXO22, and mis-regulation of KDM4A results in changes in global histone 3 lysine 9 and 36 (H3K9 and H3K36) methylation levels and impacts the transcription of a KDM4A target gene, ASCL2. Chapter 3 shows how PHF8 is targeted for proteasomal degradation by the APCCDC20 via a novel, previously unreported LxPKxLF motif on PHF8. I also found that similar to other APCCDC20 substrates like Cyclin B, PHF8 is an important G2-M regulator, loss of which results in cell cycle defects such as prolonged G2 and defective M phases. To further interrogate PHF8 biology, Chapter 4 describes the generation of a PHF8 conditional knockout mouse. PHF8 biology is interesting and relevant to human disease, as mutations are found in X-linked intellectual disability and autism. Complete loss of PHF8 by full body knockout in the mouse appears to be embryonically lethal, underscoring its key role in early development. This mouse model would allow us to extensively study the biochemistry and biology of PHF8 in the context of development and especially in brain function, where it is anticipated to play key roles. Overall, my dissertation work provides mechanistic and biological insights into how histone demethylases are dynamically regulated by the ubiquitin-proteasome system, providing an extra dimension to our understanding of how chromatin marks can be regulated.
机译:赖氨酸甲基化是在组蛋白上发现的重要的翻译后修饰,分别通过组蛋白赖氨酸甲基转移酶和去甲基酶添加和去除。赖氨酸甲基化以特定且受良好调节的方式发生,并且在调节重要的生物过程(例如转录,DNA损伤和细胞周期)中起关键作用。这些甲基化酶的蛋白质丰度的调节,特别是通过泛素-蛋白酶体系统的调节,已成为一种关键的机制,通过它可以调节细胞的组蛋白甲基化状态,从而使细胞对特定的发育和环境线索做出快速反应。在我的论文中,我主要研究两个组蛋白赖氨酸脱甲基酶KDM4A和PHF8,它们似乎都受到E3连接酶的调控。该调节影响它们在细胞中的功能。第2章显示KDM4A被SCF FBXO22靶向用于蛋白酶体降解,并且KDM4A的调控异常会导致整体组蛋白3赖氨酸9和36(H3K9和H3K36)甲基化水平发生变化,并影响KDM4A目标基因ASCL2的转录。第3章显示了如何通过PCCD8上以前未报道的新型LxPKxLF基序,将APCCDC20靶向PHF8进行蛋白酶体降解。我还发现,与细胞周期蛋白B等其他APCCDC20底物相似,PHF8是重要的G2-M调节剂,失去它会导致细胞周期缺陷,例如延长的G2和有缺陷的M期。为了进一步询问PHF8生物学,第4章描述了PHF8条件性基因敲除小鼠的产生。 PHF8生物学很有趣,并且与人类疾病有关,因为在X连锁的智力障碍和自闭症中发现了突变。小鼠全身敲除导致PHF8完全丧失似乎在胚胎方面具有致命性,强调了其在早期发育中的关键作用。这种小鼠模型将使我们能够在发育的背景下,尤其是在脑功能方面广泛研究PHF8的生物化学和生物学,预计在其中它会发挥关键作用。总的来说,我的论文工作提供了有关泛素-蛋白酶体系统如何动态调节组蛋白脱甲基酶的机制和生物学见解,为我们对染色质标记如何调控的理解提供了一个额外的维度。

著录项

  • 作者

    Lim, Hui Jun.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Cellular biology.;Molecular biology.;Biochemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号