首页> 外文学位 >Dynamic delamination of patterned thin films.
【24h】

Dynamic delamination of patterned thin films.

机译:动态剥离图案的薄膜。

获取原文
获取原文并翻译 | 示例

摘要

Thin films constitute key elements in various multilayer electronic and optical devices such as integrated circuits, magnetic storage media and thermal sensing. One of the important parameters controlling the thermomechanical integrity and reliability of thin film systems is interface adhesion, which is characterized by two independent parameters: the interface strength and the interface fracture toughness. Laser-induced spallation methods have been developed to quantify these thin film interface adhesion parameters. The research presented in this dissertation involves developing new numerical methods to analyze a dynamic adhesion experiment that uses laser-induced stress wave to achieve a stable interfacial crack growth. Direct comparison between computational and experimental results is made to extract the interfacial fracture toughness.;A novel numerical method based on the combination of spectral and finite element scheme is presented to investigate the laser-induced edge delamination of patterned thin films. Spectral treatment for the substrate is based on the Fourier series representation of boundary elastodynamic equations, while an explicit finite element model is used to capture wave propagation in the thin film. Cohesive elements are introduced along the fracture plane to simulate the failure initiation and debonding process. The important role of the inertia on the crack extension and the appearance of the mixed-mode failure are demonstrated by observing the traction stress evolutions at various points along the bond line. Parametric studies on the effect of film thickness, interface fracture toughness, loading pulse on the debonding process are performed. Detailed study of the thin film edge delamination suggests a new specimen geometry that incorporates a weak adhesive layer made of high density material to exploit the inertial forces to better control crack propagation.;A significant obstacle limiting the application of the 2D hybrid spectral/finite element is its computational cost. To overcome such challenge and to support the laser spallation experiments in extracting the fracture toughness values, we develop a numerical scheme based on the combination of a nonlinear beam model to capture the elastodynamic response of the thin film and a cohesive failure model to simulate the interface. The accuracy of the model is assessed through a comparison with the results of a more complex 2D hybrid spectral/finite element scheme. Numerical results are then validated with experimental measurements of the interface crack evolution history using resistance gage technique. A major assumption in extracting the fracture toughness from the dynamic test is that most of the energy imparted in the pre-crack region of the film is channeled into the failure process. The reliability of this assumption is verified through a systematic parametric study of some of the key geometrical and loading quantities.;Various quasi-static adhesion measurement techniques have been developed for thin film systems including the peel, pull, blister, indentation and four-point bending tests. Despite their limitations, which are related to either time consuming sample preparation process or complicated data interpretation, these methods are still extensively used among industrial and academic community. In the last part of this dissertation, the four-point bend technique is employed and served as a baseline study to validate the dynamic test results. The quasi-static experiment is performed at a slow loading rate ca. 100 nm/s whereas the laser-induced stress wave loads the specimens at a high strain rate ca. 107/s in the dynamic test. Comparison results obtained from dynamic and quasi-static tests reveals the influence of loading rate on the interface fracture toughness.
机译:薄膜构成了各种多层电子和光学设备(例如集成电路,磁存储介质和热感测)中的关键元素。控制薄膜系统热机械完整性和可靠性的重要参数之一是界面附着力,其特征在于两个独立的参数:界面强度和界面断裂韧性。已经开发了激光诱导的剥落方法来量化这些薄膜界面的粘附参数。本文的研究涉及开发新的数值方法,以分析动态粘附实验,利用激光诱导的应力波实现稳定的界面裂纹扩展。直接比较了计算结果和实验结果,得出了界面断裂韧度。提出了一种基于光谱和有限元方案相结合的数值方法,研究了激光诱导的图案薄膜边缘分层。基板的光谱处理基于边界弹性动力学方程的傅立叶级数表示,而显式的有限元模型用于捕获薄膜中的波传播。沿断裂面引入内聚元素,以模拟破坏的开始和剥离过程。通过观察沿粘结线各个点的牵引应力演变,可以证明惯性对裂纹扩展和混合模式破坏的出现具有重要作用。对薄膜厚度,界面断裂韧性,加载脉冲对脱胶过程的影响进行了参数研究。对薄膜边缘分层的详细研究表明,一种新的试样几何结构包含了由高密度材料制成的薄弱粘合层,以利用惯性力更好地控制裂纹扩展。;一个严重的障碍限制了二维混合光谱/有限元的应用是其计算成本。为了克服这种挑战并支持激光剥落实验来提取断裂韧性值,我们基于非线性梁模型(用于捕获薄膜的弹性动力学响应)和内聚破坏模型(用于模拟界面)的组合,开发了一种数值方案。 。通过与更复杂的2D混合光谱/有限元方案的结果进行比较来评估模型的准确性。然后使用电阻应变计技术对界面裂纹演变历史的实验测量结果验证了数值结果。从动态测试中提取断裂韧性的主要假设是,在膜的裂纹前区域传递的大部分能量都被引导到破坏过程中。通过对一些关键的几何和载荷量进行系统的参数研究,验证了该假设的可靠性。;已经为薄膜系统开发了各种准静态粘附力测量技术,包括剥离,拉动,起泡,压痕和四点测量弯曲测试。尽管它们的局限性与耗时的样品制备过程或复杂的数据解释有关,但这些方法仍在工业界和学术界广泛使用。在本文的最后部分,采用四点弯曲技术并将其作为基线研究来验证动态测试结果。准静态实验是在大约缓慢的加载速率下进行的。 100 nm / s,而激光诱导的应力波以高应变率ca加载样品。动态测试中为107 / s。通过动态和准静态测试获得的比较结果表明,加载速率对界面断裂韧性的影响。

著录项

  • 作者

    Tran, Phuong.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号