首页> 外文学位 >Characterization of surface plasmon resonance (SPR) active nanohole array sensing platforms: Development and application of novel instrumentation and methodology.
【24h】

Characterization of surface plasmon resonance (SPR) active nanohole array sensing platforms: Development and application of novel instrumentation and methodology.

机译:表面等离振子共振(SPR)有源纳米孔阵列传感平台的表征:新型仪器和方法的开发和应用。

获取原文
获取原文并翻译 | 示例

摘要

Surface plasmon resonance (SPR) active nanohole array substrates offer a diverse biosensing platform with high sensitivity and unique characteristics. This dissertation investigates the sensitivity and fundamental SP features of various nanohole array substrates and demonstrates higher sensitivity than conventional continuous gold platforms, tunability to specific analytes, and great enhancement of the local field intensity. Novel instrumentation and analytical techniques are developed and utilized to assess the nanohole array SPR sensing substrates in the near infrared as well as with interaction of other nanostructures.;The nanohole array substrates are evaluated throughout the near-infrared (NIR) region by novel SPR instrumentation and methodology that extends the working SPR wavelength range and measurement reliability. Development of a robust NIR-SPR instrument allows access to higher wavelength ranges where sensitivity is improved and novel SP modes and plasmonic materials may be investigated. Different aspects of the NIR-SPR instrument, including temporal stability, mechanical resilience and sensitivity, are evaluated and presented. Furthermore, a method is developed for improving precision and accuracy of empirically determined SP penetration depth, a merit of SPR spectroscopy sensitivity. The technique incorporates an adsorbate-metal bonding effect which improves the consistency in the penetration depth value calculated at different adsorbate thicknesses from 41-1089% relative deviation (without bonding effect) to 2-11% relative deviation (with bonding effect). It also improves the experimental agreement with theory, increases the accuracy of assessing novel plasmonic materials and nanostructures, and increases the precision in adsorbate parameters calculated from the penetration depth value, such as thickness, binding affinity, and surface coverage.;Utilizing this NIR-SPR instrument and improved technique for calculation of penetration depth, the sensitivity and various SP modes of the nanohole arrays throughout the NIR range are evaluated, and an improvement in sensitivity compared to conventional continuous gold is observed. Both the Bragg SPs arising from diffraction by the periodic holes and the traditional propagating SPs are characterized with emphasis on sensing capability of the propagating SPs. There are numerous studies on the transmission spectroscopy of nanohole arrays; however this dissertation presents one of the few studies in Kretschmann mode, and the first in the near infrared, where greater surface sensitivity is observed. The sensitivity profile of various nanohole array parameters (periodicity, diameter, excitation wavelength) and SP modes is also presented.;Further control and enhancement of the SP field is pursued by interaction between nanohole array substrate and nanoparticles to exploit field intensification between plasmonic structures, i.e. gap mode enhancement. Under specific conditions, the SPs couple together and the electric field between the structures is amplified and localized, which may be exploited for sensing purposes and surface enhanced techniques, including tip enhanced Raman spectroscopy (TERS) or surface enhanced Raman spectroscopy (SERS). A technique for observing nanohole array-nanoparticle distance dependent SP interaction is developed and utilized to demonstrate SP interaction. Scanning probe microscopy controls the position of a single nanoparticle (SNP) affixed to an atomic force microscope probe, and the location specific interaction of the SNP-nanohole array surface plasmons is measured by darkfield surface plasmon resonance spectroscopy. Coupling of the nanoparticle to the nanohole array exhibits a maximum when the SNP resides within a nanohole, which resulted in a maximum SPR wavelength shift of 17 nm and an increase in scatter intensity. This dissertation presents the first empirical observations of SPM controlled gap mode enhancement of more complex nanostructures and allows for optimization of positioning prior to use in sensing.
机译:表面等离子体共振(SPR)活性纳米孔阵列基板提供了具有高灵敏度和独特特性的多样化生物传感平台。本文研究了各种纳米孔阵列基板的灵敏度和基本的SP特性,并显示出比常规连续金平台更高的灵敏度,对特定分析物的可调性以及局部场强的极大增强。开发了新颖的仪器和分析技术,并将其用于评估近红外中的纳米孔阵列SPR感测基板以及其他纳米结构的相互作用;通过新型SPR仪器对纳米孔阵列基板在整个近红外(NIR)区域进行评估以及扩展工作SPR波长范围和测量可靠性的方法。强大的NIR-SPR仪器的开发允许进入更高的波长范围,从而提高了灵敏度,并且可以研究新型SP模式和等离子体材料。评估并介绍了NIR-SPR仪器的不同方面,包括时间稳定性,机械弹性和灵敏度。此外,开发了一种用于提高经验确定的SP穿透深度的精度和准确性的方法,这是SPR光谱灵敏度的优点。该技术结合了一种吸附剂-金属键合效果,可将在不同吸附物厚度下从41-1089%的相对偏差(无键合效应)提高到2-11%的相对偏差(有键合效应)时所计算的穿透深度值的一致性。它还提高了与理论上的实验一致性,提高了评估新型等离激元材料和纳米结构的准确性,并提高了根据穿透深度值(例如厚度,结合亲和力和表面覆盖率)计算出的吸附物参数的精度。评估了在整个NIR范围内对纳米孔阵列的穿透深度,灵敏度和各种SP模式进行计算的SPR仪器和改进的技术,并且观察到与常规连续金相比,灵敏度有所提高。由周期孔的衍射引起的布拉格SP和传统的传播SP均以对传播SP的感测能力为重点。关于纳米孔阵列的透射光谱的研究很多。然而,本文提出了克雷奇曼模式下的少数研究之一,并且是近红外下的第一次研究,其中观察到了更高的表面灵敏度。还给出了各种纳米孔阵列参数(周期,直径,激发波长)和SP模式的灵敏度分布图;通过纳米孔阵列基板和纳米粒子之间的相互作用来追求SP场的进一步控制和增强,以利用等离激元结构之间的场增强,即间隙模式增强。在特定条件下,SP耦合在一起,结构之间的电场被放大和局部化,可用于传感目的和表面增强技术,包括尖端增强拉曼光谱(TERS)或表面增强拉曼光谱(SERS)。开发了一种用于观察纳米孔阵列-纳米粒子距离相关的SP相互作用的技术,并将其用于证明SP相互作用。扫描探针显微镜控制附着在原子力显微镜探针上的单个纳米颗粒(SNP)的位置,并通过暗场表面等离子体激元共振光谱法测量SNP-纳米孔阵列表面等离子体激元的位置特异性相互作用。当SNP驻留在纳米孔中时,纳米颗粒与纳米孔阵列的偶联显示出最大值,这导致最大SPR波长偏移为17 nm,并且散射强度增加。本论文首次提出了由SPM控制的更复杂的纳米结构的间隙模式增强的经验观察,并允许在用于传感之前优化定位。

著录项

  • 作者

    Kegel, Laurel L.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Chemistry General.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号