首页> 外文学位 >Linkage map construction and analysis of fruit size in sweet (Prunus avium L.) and sour (Prunus cerasus L.) cherry.
【24h】

Linkage map construction and analysis of fruit size in sweet (Prunus avium L.) and sour (Prunus cerasus L.) cherry.

机译:连锁图的构建和甜(Prunus avium L.)和酸(Prunus cerasus L.)樱桃的果实大小分析。

获取原文
获取原文并翻译 | 示例

摘要

Maximizing fruit size is critical for profitable sweet (Prunes avium L.) and sour (Prunes cerasus L.) cherry production, yet little is known about the genetic control of this trait. Fruit size varies widely between cherry cultivars, and significant variation exists among genetically identical fruit due to environmental and cultural differences. A more thorough understanding of the genetic control of fruit size may be used to design future management and genetic improvement strategies to increase cherry fruit size.; This research examined the mesocarp cellular differences between five cultivars representing a broad range of fruit size in sweet cherry. Both cell number and cell size were significantly different (P 0.05) between cultivars. However, the relationship of cell number with fruit weight and diameter was significantly and positively correlated while cell size was not correlated with either measure of fruit size. Cell number was stable during the three years of this study and in two different locations. Differences in cell number due to environmental variation were examined in fruit from three of the same cultivars that were significantly different ( P 0.001) in fruit size. In this case, fruit size differences were attributed to a difference in cell size rather than cell number, confirming the identification of cell number as the primary genetic component resulting in fruit size differences between cultivars.; To study the genetic control of fruit size in cherry, linkage maps were constructed for reciprocal crosses between the sweet cherry cultivars 'NY 54' and 'EF'. The linkage maps consist of 8 linkage groups (LG) for the 'EF' parent (479.1 cM) and 10 LG for the 'NY 54' parent (308.9 cM). The average distance between marker loci and largest gaps are 7 cM and 29 cM for 'EF' and 8 cM and 34 cM for 'NY 54', respectively. Fourteen of the sweet cherry linkage groups could be aligned with the reference Prunus map based on shared SSR markers.; QTL analysis of fruit size traits was performed using the 'NY 54' x 'EF' population. For mesocarp length, one QTL (mlength1) was identified on 'EF' linkage group 6 (LG 6) and one on 'NY 54' LG (y) ( mlength2), explaining 18.3% and 37.4% of the total phenotypic variance, respectively. Three QTL were identified for mesocarp cell length, on 'EF' LG 6 (clength1) and 'NY 54' LG 6 (clength2) and LG (y) (clength3). The QTL explained 17.4, 16.8, and 16.8% of the phenotypic variation, respectively.; A targeted mapping approach, using SSR loci previously mapped to LG 6 in other Prunus species was used to develop a linkage map for the 'UF' x 'Surefire' sour cherry population. A QTL three cM from the S locus explaining 26.4% of the phenotypic variation was identified in the 'UF' x 'Surefire' population. Additionally, a fruit shape QTL was also located on LG 6, co-segregating with the CPSCT012 marker and explaining up to 22.6% of the phenotypic variation for fruit shape.
机译:对于获利的甜(李子李)和酸(李子樱桃)樱桃生产,最大化果实大小至关重要,但对该性状的遗传控制知之甚少。樱桃品种之间的果实大小差异很大,并且由于环境和文化差异,遗传上相同的果实之间存在显着差异。对果实大小的遗传控制有更透彻的了解,可以用来设计未来的管理和遗传改良策略以增加樱桃果实的大小。这项研究检查了五个品种之间的中果皮细胞差异,这些品种代表了甜樱桃中的多种水果大小。两个品种之间的细胞数量和细胞大小均显着不同(P <0.05)。然而,细胞数目与果实重量和直径的关系是显着正相关的,而细胞大小与任何一种果实大小的测量均不相关。在这项研究的三年中以及在两个不同的位置,细胞数量稳定。在三个相同品种的果实中,由于环境变化而导致的细胞数量差异得到了检验,这三个果实的果实大小差异显着(P <0.001)。在这种情况下,果实大小的差异归因于细胞大小而不是细胞数目的差异,从而确认了将细胞数目鉴定为主要遗传成分,从而导致了不同品种之间果实大小的差异。为了研究樱桃果实大小的遗传控制,构建了甜樱桃“ NY 54”和“ EF”之间相互杂交的连锁图谱。连锁图由'EF'父母(479.1 cM)的8个连锁组(LG)和'NY 54'父母(308.9 cM)的10个LG组成。 “ EF”标记位点与最大缺口之间的平均距离分别为“ EF”为7 cM和29 cM,“ NY 54”为8 cM和34 cM。基于共享的SSR标记,可将14个甜樱桃连锁组与参考李属图进行对齐。使用'NY 54'x'EF'种群进行了果实大小性状的QTL分析。对于中果皮长度,在“ EF”连锁组6(LG 6)上鉴定出一个QTL(mlength1),在“ NY 54” LG(y)上鉴定一个QTL(mlength2),分别解释了总表型变异的18.3%和37.4%。 。在'EF'LG 6(clength1)和'NY 54'LG 6(clength2)和LG(y)(clength3)上确定了三个QTL用于中果皮细胞长度。 QTL分别解释了表型变异的17.4、16.8和16.8%。使用先前映射到其他李属物种中LG 6的SSR基因座的有针对性的作图方法被用于开发'UF'x'Surefire'酸樱桃种群的连锁图。在'UF'x'Surefire'人群中发现了来自S基因座的QTL 3 cM,解释了26.4%的表型变异。此外,在LG 6上也有一个水果形状QTL,与CPSCT012标记共分离,解释了多达22.6%的水果形状表型变异。

著录项

  • 作者

    Olmstead, James Winston.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Biology Genetics.; Agriculture Horticulture.; Agriculture Plant Culture.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遗传学;作物生物学原理、栽培技术与方法;
  • 关键词

  • 入库时间 2022-08-17 11:40:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号