首页> 外文学位 >Translational symmetry breaking in materials: First-principles wannier function study.
【24h】

Translational symmetry breaking in materials: First-principles wannier function study.

机译:材料中的平移对称性破译:第一性原理的瓦尼尔函数研究。

获取原文
获取原文并翻译 | 示例

摘要

The spatial periodicity of the crystal structure dictates the electronic band structure theory as the fundamental paradigm in solid state physics. The original translation in materials is commonly broken with an enlarged unit cell required by spontaneously developed long-range order or multiple competing periodicities. The former happens in the systems undergoing the phase transition to antiferromagnetism, charge/spin density waves or lattice distortion. The latter originates from the intrinsic arrangement of the multiple atom system or the externally introduced impurities. The emergence of the broken symmetry can significantly modify the electronic structure, shift the chemical potential, and change the electric, magnetic or optical response in the experimental measurement. In this thesis, the impact of the translational symmetry breaking on various materials is investigated by utilizing the first-principles Wannier functions. We represent the electronic structure by calculating the one-particle spectral function in the reference momentum basis corresponding to a shorter periodicity. In the first case, the lattice distortion in Li metal at high pressures is found to cause the Fermi surface topological change, termed Lifshitz transition. This transition triggers an anomalous enhancement of superconductivity. In the second case, we formulate a theoretical approach to create massless Dirac particles in one-band two-dimensional lattice from the inspiration of understanding Dirac cone formation in graphene. In the last case, we discuss that staggered tetrahedral structures in Fe-based superconductors can imply the orbital-parity selective physics in the quasi-particles and superconducting pairing structures.
机译:晶体结构的空间周期性决定了电子能带结构理论是固态物理学的基本范式。材料中的原始翻译通常被自发形成的远距离有序或多个竞争周期所需的扩大的晶胞破坏。前者发生在经历相变到反铁磁性,电荷/自旋密度波或晶格畸变的系统中。后者源自多原子系统的固有排列或外部引入的杂质。对称性破坏的出现可以显着改变电子结构,改变化学势,并在实验测量中改变电,磁或光响应。本文利用第一性原理Wannier函数研究了平移对称性破裂对各种材料的影响。我们通过在与较短周期相对应的参考动量基础上计算单粒子光谱函数来表示电子结构。在第一种情况下,发现锂金属在高压下的晶格畸变会引起费米表面的拓扑变化,这种变化被称为Lifshitz跃迁。这种转变触发了超导性的异常增强。在第二种情况下,我们从了解石墨烯中狄拉克锥形成的灵感出发,制定了一种理论方法来在一带二维晶格中创建无质量狄拉克粒子。在最后一种情况下,我们讨论了铁基超导体中的交错四面体结构可能暗示着准粒子和超导配对结构中的轨道奇偶性选择物理学。

著录项

  • 作者

    Lin, Chia-Hui.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Physics General.;Engineering Materials Science.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号